Side-by-Side OCE-Study of Elasticity and SHG-Characterization of Collagen Fibers in Breast Cancer Tissue before and after Chemotherapy

Anton A. Plekhanov orcid (Login required)
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Arseniy L. Potapov
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Mikhail V. Pavlov
Nizhny Novgorod Regional Oncologic Hospital, Russia

Vadim V. Elagin
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Ekaterina V. Gubarkova
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Alexander A. Sovetsky
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Lev A. Matveev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Dmitriy A. Vorontsov
Nizhny Novgorod Regional Oncologic Hospital, Russia

Alexander L. Matveyev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Alexey Y. Vorontsov
Nizhny Novgorod Regional Oncologic Hospital, Russia

Sergey V. Gamayunov
Nizhny Novgorod Regional Oncologic Hospital, Russia

Elena V. Zagaynova
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Marina A. Sirotkina
Privolzhsky Research Medical University, Nizhny Novgorod, Russia

Vladimir Y. Zaitsev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Natalia D. Gladkova
Privolzhsky Research Medical University, Nizhny Novgorod, Russia


Paper #8959 received 20 Apr 2023; revised manuscript received 31 May 2023; accepted for publication 2 Jun 2023; published online 15 Jun 2023.

Abstract

In the recent years promising results have been shown by the use of Compression optical coherence elastography (C-OCE) as a new optical biopsy approach to morphological assessment/diagnostics of human breast cancer using differences in elastic properties of morphological components of cancerous tissues. In this study, for the first time, a relationship was established between microstructural organization and biomechanical properties of breast-cancer tissue with pathomorphological changes caused by chemotherapy. To characterize texture of collagen fibers in the microenvironment of breast cancer, high-resolution visualization by Second-harmonic generation (SHG) microscopy was used. A side-by-side C-OCE and SHG imaging of patients’ breast cancer tissues before and after chemotherapy was carried out. Regions of the cancer stroma (collagen fibers outside aggregates of cancer cells) were assessed separately from regions of cancer cell clusters penetrated by collagen fibers. For cancer stroma areas after chemotherapy, a statistically significant decrease in stiffness values was found. Simultaneously, parameters of collagen texture in SHG images (mean intensity, “coherency” and “energy”) indicated increase in the collagen content, orientational orderliness, and collagen-texture heterogeneity. In contrast, cancer-cell areas post chemotherapy showed a statistically significant increase in stiffness. Analysis of SHG images of these regions indicated decrease in the inter-cellular collagen content and heterogeneity of its texture, whereas its orientational orderliness somewhat increased. The established negative correlation between stiffness and SHG parameters of collagen in cancer stroma indicates the contribution of the increase in orientational orderliness and total collagen content to the reduction in stiffness of breast cancer stroma after chemotherapy. For cancer-cell regions, significantly lower correlation between stiffness and SHG parameters (especially for coherency) was found, indicating stronger role of chemotherapy-induced changes in cancer cells themselves. These results give a deeper insight in the role of collagen texture organization in biomechanics of breast cancer tissues and contribute to a more detailed substantiation of the morphological characterization of breast cancer by C-OCE imaging.

Keywords

breast cancer; tissue stiffness; morphological assessment; compression optical coherence elastography (C-OCE); second-harmonic generation (SHG)

Full Text:

PDF

References


1. H. S. Lahoti, S. D. Jogdand, “Bioimaging: Evolution, Significance, and Deficit,” Cureus 14(9), e28923 (2022).

2. R. Leitgeb, F. Placzek, E. Rank, L. Krainz, R. Haindl, Q. Li, M. Liu, M. Andreana, A. Unterhuber, T. Schmoll, and W. Drexler, “Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography,” Journal of Biomedical Optics 26(10), 100601 (2021).

3. A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Progress in Retinal and Eye Research 60, 66–100 (2017).

4. K. A. Achkasova, A. A. Moiseev, K. S. Yashin, E. B. Kiseleva, E. L. Bederina, M. M. Loginova, I. A. Medyanik, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Nondestructive label-free detection of peritumoral white matter damage using cross-polarization optical coherence tomography,” Frontiers in Oncology 13, 1133074 (2023).

5. A. A. Moiseev, M. A. Sirotkina, A. L. Potapov, L. A. Matveev, N. N. Vagapova, I. A. Kuznetsova, and N. D. Gladkova, “Lymph vessels visualization from optical coherence tomography data using depth-resolved attenuation coefficient calculation,” Journal of Biophotonics 14(9), e202100055 (2021).

6. H. M. Leung, M. L. Wang, H. Osman, E. Abouei, C. MacAulay, M. Follen, J. A. Gardecki, and G. J. Tearney, “Imaging intracellular motion with dynamic micro-optical coherence tomography,” Biomedical Optics Express 11(5), 2768–2778 (2020).

7. S. Wang, K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” Journal of Biophotonics 8(4), 279–302 (2015).

8. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” Journal of Biophotonics 14(2), e202000257 (2021).

9. J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE Journal of Selected Topics in Quantum Electronics 22(3), 246–265 (2016).

10. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nature Photonics 11(4), 215–221 (2017).

11. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography,” Scientific Reports 10(1), 11781 (2020).

12. M. A. Sirotkina, E. V. Gubarkova, A. A. Plekhanov, A. A. Sovetsky, V. V. Elagin, A. L. Matveyev, L. A. Matveev, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “In vivo assessment of functional and morphological alterations in tumors under treatment using OCT-angiography combined with OCT-elastography,” Biomedical Optics Express 11(3), 1365–1382 (2020).

13. P. Wijesinghe, B. F. Kennedy, and D. D. Sampson, “Optical elastography on the microscale,” in Tissue Elasticity Imaging, S. K. Alam, B. S. Garra (Eds.), Elsevier, Amsterdam, 185–229 (2020).

14. D. Kashyap, D. Pal, R. Sharma, V. K. Garg, N. Goel, D. Koundal, A. Zaguia, S. Koundal, and A. Belay, “Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures,” BioMed Research International 2022, 9605439 (2022).

15. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Reseach 75(16), 3236–3245 (2015).

16. E. V. Gubarkova, A. A. Sovetsky, L. A. Matveev, A. L. Matveyev, D. A. Vorontsov, A. A. Plekhanov, S. S. Kuznetsov, S. V. Gamayunov, A. Y. Vorontsov, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, “Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues,” Materials 15(9), 3308 (2022).

17. E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomedical Optics Express 10(5), 2244–2263 (2019).

18. E. V. Gubarkova, E. B. Kiseleva, M. A. Sirotkina, D. A. Vorontsov, K. A. Achkasova, S. S. Kuznetsov, K. S. Yashin, A. L. Matveyev, A. A. Sovetsky, L. A. Matveev, A. A. Plekhanov, A. Y. Vorontsov, V. Y. Zaitsev, and N. D. Gladkova, “Diagnostic Accuracy of Cross-Polarization OCT and OCT-Elastography for Differentiation of Breast Cancer Subtypes: Comparative Study,” Diagnostics 10(12), 994 (2020).

19. D. A. Vorontsov, E. V. Gubarkova, M. A. Sirotkina, A. A. Sovetsky, A. A. Plekhanov, S. S. Kuznetsov, D. A. Davydova, A. Y. Bogomolova, V. Y. Zaitsev, S. V. Gamayunov, A. Y. Vorontsov, V. A. Sobolevskiy, and N. D. Gladkova, “Multimodal Optical Coherence Tomography for Intraoperative Evaluation of Tumor Margins and Surgical Margins in Breast-Conserving Surgery,” Sovremennye tehnologii v medicine 14(2), 26–38 (2022).

20. P. Gong, S. L. Chin, W. M. Allen, H. Ballal, J. D. Anstie, L. Chin, H. M. Ismail, R. Zilkens, D. D. Lakhiani, M. McCarthy, Q. Fang, D. Firth, K. Newman, C. Thomas, J. Li, R. W. Sanderson, K. Y. Foo, C. Yeomans, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Quantitative Micro-Elastography Enables In Vivo Detection of Residual Cancer in the Surgical Cavity during Breast-Conserving Surgery,” Cancer Research 82(21), 4093–4104 (2022).

21. A. Plekhanov, E. Gubarkova, A. Sovetsky, M. Sirotkina, S. Kuznetsov, L. Matveev, D. Vorontsov, A. Matveyev, E. Zagaynova, V. Zaitsev, and N. Gladkova, “Improvement of breast cancer histological examination by means of multimodal OCT,” in European Conferences on Biomedical Optics, 20–24 June 2021, Munich, Germany, EW4A.22 (2021).

22. A. A. Plekhanov, E. V. Gubarkova, M. A. Sirotkina, A. A. Sovetsky, D. A. Vorontsov, L. A. Matveev, S. S. Kuznetsov, A. Y. Bogomolova, A. Y. Vorontsov, A. L. Matveyev, S. V. Gamayunov, E. V. Zagaynova, V. Y. Zaitsev, and N. D. Gladkova, “Compression OCT-elastography combined with speckle-contrast analysis as an approach to morphological assessment of breast cancer tissue,” Biomedical Optics Express 14(6), 3037–3056 (2023).

23. T. Oskarsson, “Extracellular matrix components in breast cancer progression and metastasis,” The Breast 22, S66–S72 (2013).

24. I. Druzhkova, E. Nikonova, N. Ignatova, I. Koryakina, M. Zyuzin, A. Mozherov, D. Kozlov, D. Krylov, D. Kuznetsova, U. Lisitsa, V. Shcheslavskiy, E. A. Shirshin, E. Zagaynova, and M. Shirmanova, “Effect of Collagen Matrix on Doxorubicin Distribution and Cancer Cells' Response to Treatment in 3D Tumor Model,” Cancers 14(22), 5487 (2022).

25. P. J. Keely, A. M. Fong, M. M. Zutter, and S. A. Santoro, “Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells,” Journal of Cell Science 108(2), 595–607 (1995).

26. D. Chauhan, S. Geetika, S. Kumar, and R. Kumar, “Combined Interaction of Cellular and Extracellular Components Causes Genetic Cascade Activation in Breast Cancer Metastasis,” Oncology 100(6), 354–362 (2022).

27. O. Tezcan, A. S. Elshafei, K. Benderski, E. Rama, M. Wagner, D. Moeckel, R. Pola, M. Pechar, T. Etrych, S. von Stillfried, F. Kiessling, R. Weiskirchen, S. Meurer, and T. Lammers, “Effect of Cellular and Microenvironmental Multidrug Resistance on Tumor-Targeted Drug Delivery in Triple-Negative Breast cancer,” Journal of Controlled Release 354, 784–793 (2023).

28. E. V. Gubarkova, V. V. Elagin, V. V. Dudenkova, S. S. Kuznetsov, M. M. Karabut, A. L. Potapov, D. A. Vorontsov, A. Y. Vorontsov, M. A. Sirotkina, E. V. Zagaynova, and N. D. Gladkova, “Multiphoton tomography in differentiation of morphological and molecular subtypes of breast cancer: A quantitative analysis,” Journal of Biophotonics 14(5), e202000471 (2021).

29. D. Desa, M. Bhanote, R. Hill, J. Majeski, B. Buscaglia, M. D’Aguiar, R. Strawderman, D. Hicks, B. Turner, and E. Brown, “Second-harmonic generation directionality is associated with neoadjuvant chemotherapy response in breast cancer core needle biopsies,” Journal of Biomedical Optics 24(8), 086503 (2019).

30. World Medical Association, “Ethical principles for medical research involving human subjects,” European Journal of Emergency Medicine: Official Journal of the European Society for Emergency Medicine 8(3), 221–223 (2001).

31. F. Cardoso, S. Kyriakides, S. Ohno, F. Penault-Llorca, P. Poortmans, I. T. Rubio, S. Zackrisson, and E. Senkus, “Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,” Annals of Oncology 30(8), 1194–1220 (2019).

32. A. A. Plekhanov, M. A. Sirotkina, E. V. Gubarkova, E. B. Kiseleva, A. A. Sovetsky, M. M. Karabut, V. E. Zagainov, S. S. Kuznetsov, A. V. Maslennikova, E. V. Zagaynova, V. Y. Zaitsev, and N. D. Gladkova, “Towards targeted colorectal cancer biopsy based on tissue morphology assessment by compression optical coherence elastography,” Frontiers in Oncology 13, 1121838 (2023).

33. V. M. Gelikonov, V. N. Romashov, D. V. Shabanov, S. Y. Ksenofontov, D. A. Terpelov, P. A. Shilyagin, G. V. Gelikonov, and I. A. Vitkin, “Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System,” Radiophysics and Quantum Electronics 60, 897–911 (2018).

34. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” Journal of Innovative Optical Health Sciences 10(06), 1742006 (2017).

35. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Physics Letters 15(6), 065603 (2018).

36. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Physics Letters 15(8), 085602 (2018).

37. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Plekhanov, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, “Full-optical method of local stress standardization to exclude nonlinearity-related ambiguity of elasticity estimation in compressional optical coherence elastography,” Laser Physics Letters 17, 065601 (2020).

38. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, and V. Y. Zaitsev, “Mapping Large Strains in Phase-Sensitive OCT: Key Role of Supra-Pixel Displacement Tracking in Incremental Strain Evaluation,” Journal of Biomedical Photonics & Engineering 8(3), 030304 (2022).

39. E. V. Gubarkova, D. A. Vorontsov, A. A. Sovetsky, E. L. Bederina, M. A. Sirotkina, A. Yu Bogomolova, S. V. Gamayunov, A. Yu Vorontsov, P. V. Krivorotko, V. Y. Zaitsev, and N. D. Gladkova, “Quantification of linear and nonlinear elasticity by compression optical coherence elastography for determining lymph node status in breast cancer,” Laser Physics Letters 20(6), 065601 (2023).

40. A. A. Plekhanov, M. A. Sirotkina, V. Y. Zaitsev, E. V. Gubarkova, S. S. Kuznetsov, E. N. Grigoreva, A. A. Sovetsky, L. A. Matveev, A. L. Matveyev, E. V. Zagaynova, and N. D. Gladkova, “Determining morphological structures’ stiffness values of tumor tissue by optical coherence elastography,” Proceedings of SPIE 11457, 1145707 (2020).

41. L. B. Mostaço-Guidolin, A. C. Ko, F. Wang, B. Xiang, M. Hewko, G. Tian, A. Major, M. Shiomi, and M. G. Sowa, “Collagen morphology and texture analysis: from statistics to classification,” Scientific Reports 3(1), 2190 (2013).

42. Z. Nejim, L. Navarro, C. Morin, and P. Badel, “Quantitative analysis of second harmonic generated images of collagen fibers: a review,” Research on Biomedical Engineering 39(1), 273–295 (2023).

43. C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy,” Biophysical Journal 92(6), 2212–2222 (2007).

44. R. Rezakhaniha, A. Agianniotis, J. T. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomechanics and Modeling in Mechanobiology 11, 461–473 (2012).

45. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9(7), 676–682 (2012).

46. E. Fonck, G. G. Feigl, J. Fasel, D. Sage, M. Unser, D. A. Rüfenacht, and N. Stergiopulos, “Effect of aging on elastin functionality in human cerebral arteries,” Stroke 40(7), 2552–2556 (2009).

47. S. C. Hagenaars, S. de Groot, D. Cohen, T. J. A. Dekker, A. Charehbili, E. Meershoek-Klein Kranenbarg, M. Duijm-de Carpentier, H. Pijl, H. Putter, R. Tollenaar, J. R. Kroep, and W. E. Mesker, “Tumor-stroma ratio is associated with Miller-Payne score and pathological response to neoadjuvant chemotherapy in HER2-negative early breast cancer,” International Journal of Cancer 149(5), 1181–1188 (2021).

48. N. F. Boyd, Q. Li, O. Melnichouk, E. Huszti, L. J. Martin, A. Gunasekara, G. Mawdsley, M. J. Yaffe, and S. Minkin, “Evidence that breast tissue stiffness is associated with risk of breast cancer,” PLoS One 9(7), e100937 (2014).

49. G. J. Yoshida, A. Azuma, Y. Miura, and A. Orimo, “Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies,” International Journal of Molecular Sciences 20(9), 2256 (2019).

50. S. Wu, Y. Huang, Q. Tang, Z. Li, H. Horng, J. Li, Z. Wu, Y. Chen, and H. Li, “Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging,” Biomedical Optics Express 9(3), 1375–1388 (2018).

51. L. Li, Z. Han, L. Qiu, D. Kang, Z. Zhan, H. Tu, and J. Chen, “Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma,” International Journal of Biological Sciences 16(8), 1376–1387 (2020).

52. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine 4(1), 38 (2006).

53. C. D’Alterio, S. Scala, G. Sozzi, L. Roz, and G. Bertolini, “Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion,” Seminars in Cancer Biology 60, 351–361 (2020).

54. D. E. Desa, M. Bhanote, R. L. Hill, J. B. Majeski, B. Buscaglia, M. D'Aguiar, R. Strawderman, D. G. Hicks, B. M. Turner, and E. B. Brown, “Second-harmonic generation directionality is associated with neoadjuvant chemotherapy response in breast cancer core needle biopsies,” Journal of Biomedical Optics 24(8), 086503 (2019).

55. L. Li, Z. Han, L. Qiu, D. Kang, Z. Zhan, H. Tu, and J. Chen, “Evaluation of breast carcinoma regression after preoperative chemotherapy by label-free multiphoton imaging and image analysis,” Journal of Biophotonics 13(1), e201900216 (2020).

56. E. Provenzano, V. Bossuyt, G. Viale, D. Cameron, S. Badve, C. Denkert, G. MacGrogan, F. Penault-Llorca, J. Boughey, G. Curigliano, J. M. Dixon, L. Esserman, G. Fastner, T. Kuehn, F. Peintinger, G. von Minckwitz, J. White, W. Yang, and W. F. Symmans, “Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group,” Modern Pathology 28(9), 1185–1201 (2015).

57. Y. Ma, S. Zhang, J. Li, J. Li, Y. Kang, and W. Ren, “Comparison of strain and shear-wave ultrasounic elastography in predicting the pathological response to neoadjuvant chemotherapy in breast cancers,” European Radiology 27, 2282–2291 (2017).

58. E. Gubarkova, A. Potapov, D. Krupinova, K. Shatilova, M. Karabut, A. Khlopkov, M. Loginova, A. Sovetsky, V. Zaitsev, S. Radenska-Lopovok, N. Gladkova, G. Grechkanev, and M. Sirotkina, “Compression Optical Coherence Elastography for Assessing Elasticity of the Vaginal Wall under Prolapse after Neodymium Laser Treatment,” Photonics 10(1), 6 (2023).

59. M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. H. Lim, and C.-A. Schoenenberger, “The nanomechanical signature of breast cancer,” Nature Nanotechnology 7(11), 757–765 (2012).

60. F. Xia, K. Youcef-Toumi, “Review: Advanced Atomic Force Microscopy Modes for Biomedical Research,” Biosensors 12(12), 1116 (2022).

61. G. Y. H. Lee, C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends in Biotechnology 25(3), 111–118 (2007).

62. S. Havaki, M. Kouloukoussa, K. Amawi, Y. Drosos, L. D. Arvanitis, N. Goutas, D. Vlachodimitropoulos, S. D. Vassilaros, E. Z. Katsantoni, I. Voloudakis-Baltatzis, V. Aleporou-Marinou, C. Kittas, and E. Marinos, “Altered expression pattern of integrin alphavbeta3 correlates with actin cytoskeleton in primary cultures of human breast cancer,” Cancer Cell International 7, 16 (2007).

63. A. Stylianou, S. V. Kontomaris, C. Grant, and E. Alexandratou, “Atomic Force Microscopy on Biological Materials Related to Pathological Conditions,” Scanning 2019, 8452851 (2019).

64. Z. Han, L. Li, D. Kang, Z. Zhan, H. Tu, C. Wang, and J. Chen, “Label-free detection of residual breast cancer after neoadjuvant chemotherapy using biomedical multiphoton microscopy,” Lasers in Medical Science 34, 1595–1601 (2019).

65. B. Jähne(Ed.), Spatio-Temporal Image Processing: Theory and Scientific Applications, Lecture Notes in Computer Science No. 751, Springer-Verlag (1993).






© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+