Design of a Photonic Integrated Device with an on-Chip k-Clock and Tunable Reference Arm for Swept-Source Optical Coherence Tomography

Ivan V. Stepanov orcid (Login required)
Ufa University of Science and Technology, Russia

Evgeniy A. Talynev
Ufa University of Science and Technology, Russia

Anton A. Ivanov
Ufa University of Science and Technology, Russia

Ruslan V. Kutluyarov orcid
Ufa University of Science and Technology, Russia

Elizaveta P. Grakhova orcid
Ufa University of Science and Technology, Russia

Paper #8962 received 27 Apr 2023; revised manuscript received 14 Jul 2023; accepted for publication 14 Jul 2023; published online 28 Sep 2023.


The paper presents a photonic integrated circuit (PIC) design that offers a high degree of integration of building blocks required to implement a swept-source optical coherence tomography (SS-OCT) system. The device includes an interferometer, sample arm, k-clock, and a tunable reference path integrated on a single chip implemented based on the silicon nitride fabrication platform. The PIC elements are optimized to perform low losses and minimal dispersion around a central operation wavelength of 1310 nm, which is critical for applications such as OCT. The device was simulated using Ansys Lumerical software. Simulation results show that the proposed PIC provides precise control of the scanning depth with a resolution of 0.725 nm/mV. Also, the frequency of the OCT signal does not exceed 17 GHz for scanning distances below 5 mm.


optical coherence tomography; photonic integrated circuits; swept-source OCT; integrated k-clock; tunable reference path

Full Text:



1. E. Vaghefi, S. Hill, H. M. Kersten, and D. Squirrell, “Multimodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration: A Feasibility Study,” Journal of Ophthalmology 2020, 7493419 (2020).

2. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abramoff, and M. Sonka, “Three-Dimensional Analysis of Retinal Layer Texture: Identification of Fluid-Filled Regions in SD-OCT of the Macula,” IEEE Transactions on Medical Imaging 29(6), 1321–1330 (2010).

3. E. A. Rank, S. Nevlacsil, P. Muellner, R. Hainberger, M. Salas, S. Gloor, M. Duelk, M. Sagmeister, J. Kraft, R. A. Leitgeb, and W. Drexler, “In vivo human retinal swept source optical coherence tomography and angiography at 830 nm with a CMOS compatible photonic integrated circuit,” Scientific Reports 11, 21052 (2021).

4. J. Wang, Y. Xu, and S. A. Boppart, “Review of optical coherence tomography in oncology,” Journal of Biomedical Optics 22(12), 121711(2017).

5. L. Van Manen, J. Dijkstra, C. Boccara, E. Benoit, A. L. Vahrmeijer, M. J. Gora, and J. S. D. Mieog, “The clinical usefulness of optical coherence tomography during cancer interventions,” Journal of Cancer Research and Clinical Oncology 144(10), 1967–1990 (2018).

6. N. Acharya, S. K. Melanthota, M. Khokhar, S. Chakrabarti, D. Gopal, D. S. Mallya, and N. Mazumder, “Types of Optical Coherence Tomography for Cancer Diagnosis: A Systematic Review,” Journal of Biomedical Photonics & Engineering 8(1), 010201 (2022).

7. Y. Fan, Y. Xia, X. Zhang, Y. Sun, J. Tang, L. Zhang, and H. Liao, “Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics,” Bioscience Trends 12(1), 12–23 (2018).

8. K. Hartmann, K.-P. Stein, B. Neyazi, and I. E. Sandalcioglu, “Theranostic applications of optical coherence tomography in neurosurgery?” Neurosurgical Review 45, 421–427(2022).

9. J. E. Freund, M. Buijs, C. D. Savci-Heijink, D. M. de Bruin, J. J. M. C. H. de la Rosette, T. G. van Leeuwen, and M. P. Laguna, “Optical Coherence Tomography in Urologic Oncology: a Comprehensive Review,” SN Comprehensive Clinical Medicine 1, 67–84 (2019).

10. H.-W. Wang, Y. Chen, “Clinical applications of optical coherence tomography in urology,” IntraVital 3(1), e28770 (2014).

11. M. Kirillin, T. Motovilova, and N. Shakhova, “Optical coherence tomography in gynecology: a narrative review,” Journal of Biomedical Optics 22(12), 121709 (2017).

12. W. Drexler, J. G. Fujimoto (Eds.), Optical Coherence Tomography: Technology and Applications, Springer Cham (2015). ISBN: 978-3-319-06418-5.

13. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography,” Cancer Research 69(22), 8790–8796 (2009).

14. J. G. Sun, S. G. Adie, E. J. Chaney, and S. A. Boppart, “Segmentation and correlation of optical coherence tomography and X-ray images for breast cancer diagnostics,” Journal of Innovative Optical Health Sciences 6(02), 1350015 (2013).

15. E. A. Rank, A. Agneter, T. Schmoll, R. A. Leitgeb, and W. Drexler, “Miniaturizing optical coherence tomography,” Translational Biophotonics 4(1–2), e202100007 (2022).

16. J. Sancho-Durá, K. Zinoviev, J. Lloret-Soler, J. L. Rubio-Guviernau, E. Margallo-Balbás, and W. Drexler, “Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography,” Journal of Biophotonics 11(10), e201800193 (2018).

17. R. M. Ruis, A. Leinse, R. Dekker, R. G. Heideman, T. G. van Leeuwen, and D. J. Faber, “Decreasing the Size of a Spectral Domain Optical Coherence Tomography System With Cascaded Arrayed Waveguide Gratings in a Photonic Integrated Circuit,” IEEE Journal of Selected Topics in Quantum Electronics 25(1), 1–9 (2019).

18. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. Van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Optics Letters 37(23), 4820 (2012).

19. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomedical optics express 5(4), 1050 (2014).

20. G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Optics Letters 39(17), 5228 (2014).

21. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. De Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Optics Express 21(14), 16648 (2013).

22. X. Ji, X. Yao, Y. Gan, A. Mohanty, M. A. Tadayon, C. P. Hendon, and M. Lipson, “On-chip tunable photonic delay line,” APL Photonics 4(9), 090803 (2019).

23. E. A. Rank, R. Sentosa, D. J. Harper, M. Salas, A. Gaugutz, D. Seyringer, S. Nevlacsil, A. Maese-Novo, M. Eggeling, P. Muellner, R. Hainberger, M. Sagmeister, J. Kraft, R. A. Leitgeb, and W. Drexler, “Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings,” Light: Science & Applications 10, 6 (2021).

24. E. A. Rank, S. Nevlacsil, P. Muellner, R. Hainberger, A. Maese-Novo, M. Duelk, S. Gloor, M. Voelker, N. Verwaal, G. Meinhardt, M. Sagmeister, J. Kraft, P. Morrissey, M. Jezzini, Z. Quan, P. O’Brien, S. Richter, M. Kempe, D. Seyringer, and W. Drexler, “Spectral domain and swept source optical coherence tomography on a photonic integrated circuit at 840nm for ophthalmic application,” in European Conference on Biomedical Optics, Munich, Germany, 11078_29 (2019).

25. S. Nevlacsil, P. Muellner, A. Maese-Novo, M. Eggeling, F. Vogelbacher, M. Sagmeister, J. Kraft, E. Rank, W. Drexler, and R. Hainberger, “Multi-channel swept source optical coherence tomography concept based on photonic integrated circuits,” Optics Express 28(22), 32468 (2020).

26. L. Chang, N. Weiss, T. G. Van Leeuwen, M. Pollnau, R. M. De Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm,” Optics Express 24(12), 12635 (2016).

27. R. V. Kutluyarov, D. M. Fatkhiev, G. S. Voronkov, and A. K. Sultanov, “Devices for backscattered and reflected signals processing based on integrated photonics,” SPIE Proceedings 11516, 115160X (2020).

28. S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” Journal of Biophotonics 10(11), 1398–1410 (2017).

29. K. S. Park, E. Park, H. Lee, H.-J. Lee, S.-W. Lee, and T. J. Eom, “Phase stable swept-source optical coherence tomography with active mode-locking laser for contrast enhancements of retinal angiography,” Scientific Reports 11(1), 16636 (2021).

30. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Optics Express 21(21), 25120–25147 (2013).

31. Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning Optimization of Ring Resonator Delays for Integrated Optical Beam Forming Networks,” Journal of Lightwave Technology 35(22), 4954–4960 (2017).

32. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics Journal 2(2), 181–194 (2010).

33. M. Rahim, P. Akkary, N. Jamaleddine, F. Nabki, and M. Menard, “An integrated silicon-on-insulator continually tunable optical delay line for optical coherence tomography,” in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA, 709–712 (2013).

34. J. Liu, S. Cristoloveanu, and J. Wan, “A Review on the Recent Progress of Silicon‐on‐Insulator‐Based Photodetectors,” Physica Status Solidi (a) 218(14), 2000751 (2021).

35. Y. Fei, L. Zhang, T. Cao, Y. Cao, and S. Chen, “Ultracompact polarization splitter–rotator based on an asymmetric directional coupler,” Applied Optics 51(34), 8257 (2012).

36. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology 13(4), 615–627 (1995).

37. J. D. Domenech, J. S. Fandino, B. Gargallo, and P. Munoz, “Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator,” Journal of Lightwave Technology 32(14), 2536–2543 (2014).

38. “2X2 Fiber Optic Coupler 1310nm/1550nm Single Mode Double Window Fiber Splitter FC/UPC,” Civil Laser (accessed 29 June 2023). [ 2531].

39. “F-CPL-B22355-FCUPC Optical Fiber Coupler,” Newport (accessed 29 June 2023). [].

40. “G&H Products: Fiber Optics: 850, 1060, 1300 nm Extended Wideband OCT Coupler (EWOC),” G&H (accessed 29 June 2023). [].

41. “1310 nm, 2x2 Single Mode Fused Fiber Optic Couplers/Taps,” (accessed 29 June 2023). [].

42. J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater,” Advanced Materials 32(31), 2001218 (2020).

43. M. A. Tran, C. Zhang, T. J. Morin, L. Chang, S. Barik, Z. Yuan, W. Lee, G. Kim, A. Malik, Z. Zhang, J. Guo, H. Wang, B. Shen, L. Wu, K. Vahala, J. E. Bowers, H. Park, and T. Komljenovic, “Extending the spectrum of fully integrated photonics to submicrometre wavelengths,” Nature 610(7930), 54–60 (2022).

44. R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).

45. D. Melati, A. Waqas, Z. Mushtaq, and A. Melloni, “Wideband Integrated Optical Delay Line Based on a Continuously Tunable Mach–Zehnder Interferometer,” IEEE Journal of Selected Topics in Quantum Electronics 24(1), 1–8 (2018).

46. X. Wang, H. Qi, X. Hu, Z. Yu, S. Ding, Z. Du, and Q. Gong, “Advances in Photonic Devices Based on Optical Phase-Change Materials,” Molecules 26(9), 2813 (2021).

47. J. Faneca, S. Garcia-Cuevas Carrillo, E. Gemo, C. R. De Galarreta, T. Domínguez Bucio, F. Y. Gardes, H. Bhaskaran, W. H. P. Pernice, C. D. Wright, and A. Baldycheva, “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands,” Optical Materials Express 10(8), 1778 (2020).

48. M. Ahmed, Y. Al-Hadeethi, A. Bakry, H. Dalir, and V. J. Sorger, “Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks,” Nanophotonics 9(13), 4097–4108 (2020).

49. S. Kumar Bag, S. K. Varshney, “Ultrawide FSR microring racetrack resonator with an integrated Fabry–Perot cavity for refractive index sensing,” Journal of the Optical Society of America B 38(5), 1669 (2021).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+