Cardiovascular Marker Proteins Detection in the Blood Serum Using an LSPR Chip Based on Au Nanobipyramid

Prajna N. D.
Manipal Academy of Higher Education, Karnataka, India

Tom Devasia
Kasturba Medical College, Manipal, Karnataka, India

Rajeev K. Sinha (Login required)
Manipal Academy of Higher Education, Karnataka, India
Birla Institute of Technology Mesra, Ranchi, Jharkhand, India

Paper #8973 received 11 May 2023; accepted for publication 14 Jun 2023; published online 14 Sep 2023.


The localized surface plasmon resonance (LSPR) based technology allows the fabrication of inexpensive biosensors with very simple design for the detection of diseases. In the present work, we systematically fabricated an LSPR sensor chip using Au nanobipyramids (Au NBPs). Au NBPs with longitudinal LSPR band in the near-IR region (~900nm) exhibiting higher refractive index (RI) sensitivity are used for the sensor chip fabrication. The immobilized Au NBPs on a silanized glass coverslip were chemically modified using 11-mercaptoundecanoic acid (11-MUA) and Octanethiol monolayer, followed by activation using EDC-NHS chemistry for the immobilization of the protein molecules. For cardiovascular marker protein detection, monoclonal antibodies were immobilized on the sensor chip, and the marker proteins were detected from the blood serum obtained from the patients. Cardiovascular marker proteins N-terminal pro-B-type natriuretic peptide and cardiac troponin T (CTnT) were successfully detected on the fabricated LSPR sensor chip.


localized surface plasmon resonance (LSPR); Au nanobipyramids; alkanethiol monolayer; NT-proBNP; cardiac troponin T (CTnT)

Full Text:



1. S. Lv, Y. Du, F. Wu, Y. Cai, and T. Zhou, “Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling,” Nanoscale Advances 4(12), 2608–2631 (2022).

2. H. Zhang, X. Zhou, X. Li, P. Gong, Y. Zhang, and Y .Zhao, “Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects,” Biosensors 13(3), 405 (2023).

3. T. Ghodselahi, T. Neishaboorynejad, and S. Arsalani, “Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling,” Applied Surface Science 343, 194–201 (2015).

4. Y. Ziai, C. Rinoldi, P. Nakielski, L. D. Sio, and F. Pierini, “Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application,” Current Opinion in Biomedical Engineering 24, 100413 (2022).

5. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).

6. Y. Song, V. Tran, and J. Lee, “Tuning plasmon resonance in magnetoplasmonic nanochains by controlling polarization and interparticle distance for simple preparation of optical filters,” ACS Applied Materials & Interfaces 9(29), 24433–24439 (2017).

7. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Reports on Progress in Physics 75(3), 036501 (2012).

8. M. Fan, G. F. Andrade, and A. G. Brolo, “A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry,” Analytica Chimica Acta 1097, 1–29 (2020).

9. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).

10. G. Barbillon, J.-L. Bijeon, J. Plain, M. L. de la Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surface Science 601(21), 5057–5061 (2007).

11. Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors 10(10), 9397–9406 (2010).

12. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” The Journal of Physical Chemistry B 104(45), 10549–10556 (2000).

13. C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” The Journal of Physical Chemistry B 105(24), 5599–5611 (2001).

14. J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X.-J. Tang, Y.-P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface-enhanced Raman scattering substrates,” The Journal of Physical Chemistry C 112(4), 895–901 (2008).

15. S. Kaabipour, S. Hemmati, “A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures,” Beilstein Journal of Nanotechnology 12(1), 102–136 (2021).

16. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).

17. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Advanced Materials 13(18), 1389–1393 (2001).

18. M. Liu, P. Guyot-Sionnest, “Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids,” The Journal of Physical Chemistry B 109(47), 22192–22200 (2005).

19. X. Zhang, M. Tsuji, S. Lim, N. Miyamae, M. Nishio, S. Hikino, and M. Umezu, “Synthesis and Growth Mechanism of Pentagonal Bipyramid-Shaped Gold-Rich Au/Ag Alloy Nanoparticles,” Langmuir 23(11), 6372–6376 (2007).

20. Y. Xu, X. Wang, L. Cheng, Z. Liu, and Q. Zhang, “High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability,” Chemical Engineering Journal 378, 122025 (2019).

21. S. Barbosa, A. Agrawal, L. Rodríguez-Lorenzo, I. Pastoriza-Santos, R. A. Alvarez-Puebla, A. Kornowski, H. Weller, and L. M. Liz-Marzán, “Tuning size and sensing properties in colloidal gold nanostars,” Langmuir 26(18), 14943–14950 (2010).

22. S. M. Marinakos, S. Chen, and A. Chilkoti, “Plasmonic detection of a model analyte in serum by a gold nanorod sensor,” Analytical chemistry 79(14), 5278–5283 (2007).

23. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Refractive index sensitivity of Au nanostructures in solution and on the substrate,” Journal of Materials Science: Materials in Electronics 33(7), 4011–4024 (2022).

24. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Refractive index and formaldehyde sensing with silver nanocubes,” RSC advances 11(14), 8042–8050 (2021).

25. G. A. Roth et al., “Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017,” The Lancet 392(10159), 1736–1788 (2018).

26. J. A. Reyes-Retana, L. C. Duque-Ossa, “Acute Myocardial Infarction Biosensor: A Review From Bottom Up,” Current Problems in Cardiology 46(3), 100739 (2021).

27. S. Upasham, A. Tanak, and S. Prasad, “Cardiac troponin biosensors: where are we now,” Advanced Health Care Technologies 4, 1–13 (2018).

28. A. Qureshi, Y. Gurbuz, and J. H. Niazi, “Biosensors for cardiac biomarkers detection: A review,” Sensors and Actuators B: Chemical 171–172, 62–76 (2012).

29. R. K. Sinha, “Wavelength modulation based surface plasmon resonance sensor for detection of cardiac marker proteins troponin I and troponin T,” Sensors and Actuators A: Physical 332, 113104 (2021).

30. L. Tang, J. Casas, “Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis,” Biosensors and Bioelectronics 61, 70–75 (2014).

31. Y. M. Bae, S. O. Jin, I. Kim, K. Y. Shin, and D. Heo, “Detection of biomarkers using LSPR substrate with gold nanoparticle array,” Journal of Nanomaterials 2015, 302816 (2015).

32. T. Liyanage, A. Sangha, and R. Sardar, “Achieving biosensing at attomolar concentrations of cardiac troponin T in human biofluids by developing a label-free nanoplasmonic analytical assay,” Analyst 142(13), 2442–2450 (2017).

33. P. N. Deviprasada, R. K. Sinha, “Highly Stable 11-MUA Capped Gold Nanobipyramid for Refractive Index Sensing,” Journal of Biomedical Photonics & Engineering 9(1), 010308 (2023).

34. D. Chateau, A. Desert, F. Lerouge, G. Landaburu, S. Santucci, and S. Parola, “Beyond the concentration limitation in the synthesis of nanobipyramids and other pentatwinned gold nanostructures,” ACS Applied Materials & Interfaces 11(42), 39068–39076 (2019).

35. R. K. Sinha, “A simple and inexpensive surface plasmon resonance setup for phase detection using rotating analyzer ellipsometric method,” Laser Physics 30(2), 026202 (2019).

36. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9(7), 671–675 (2012).

37. A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloid Surfaces A 364(1–3), 72–81 (2010).

38. J. Casas, M. Venkataramasubramani, Y. Wang, and L. Tang, “Replacement of cetyltrimethylammonium bromide bilayer on gold nanorod by alkanethiol crosslinker for enhanced plasmon resonance sensitivity,” Biosensors and Bioelectronics 49, 525–530 (2013).

39. A. Wijaya, K. Hamad-Schifferli, “Ligand Customization and DNA Functionalization of Gold Nanorods via Round-Trip Phase Transfer Ligand Exchange,” Langmuir 24(18), 9966–9969 (2008).

40. H. Hegde, C. Santhosh, and R.K. Sinha, “Seed mediated synthesis of highly stable CTAB capped triangular silver nanoplates for LSPR sensing,” Materials Research Express 6(10), 105075 (2019).

41. A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning,” Journal of the American Chemical Society 139(1), 107–110 (2017).

42. M. Ghorbanpour, C. Falamaki, “A novel method for the fabrication of ATPES silanized SPR sensor chips: Exclusion of Cr or Ti intermediate layers and optimization of optical/adherence properties,” Applied Surface Science 301, 544–550 (2014).

43. H. Jung, C. K. Dalal, S. Kuntz, R. Shah, and C. P. Collier, “Surfactant activated dip-pen nanolithography,” Nano Letters 4(11), 2171–2177 (2004).

44. A. R. Ferhan, L. Guo, and D. H. Kim, “Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass,” Langmuir 26(14), 12433–12442 (2010).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+