Mathematical Modelling of the Influence of Different Concentrations of Oxaloacetate to Glycerol-3-Phosphate Dehydrogenase Structure

Nataliya A. Kolotyeva orcid (Login required)
Samara State Medical University, Russia

Frida N. Gilmiyarova orcid
Samara State Medical University, Russia

Oksana A. Gusyakova
Samara State Medical University, Russia

Marina V. Komarova orcid
Samara National Research University, Russia

Nikita V. Remizov
Samara National Research University, Russia

Elena A. Ryskina orcid
Higher School of Economics, Moscow, Russia

Paper #3462 received 02 Nov 2021; accepted for publication 28 Feb 2022; published online 21 Mar 2022.

DOI: 10.18287/JBPE22.08.010302


The study was devoted to the influence of different concentrations of oxaloacetate on the conformational structure of glycerol-3-phosphate dehydrogenase in a temperature gradient, using differential scanning fluorimetry on a Prometheus NT.48 device (NanoTemper Technologies, Germany). We studied the fluorescence ratio (350/330 nm) of glycerol-3-phosphate dehydrogenase in the presence of oxaloacetate at concentrations of 0.5–16 µM in a temperature gradient of 20–95 °C. We built linear regression models for the physiological temperature range and nonlinear models (polynomial of the third degree) for the temperature range corresponding to protein melting. Temperature was the independent variable; fluorescence ratio was the variable. The effect of different oxaloacetate concentrations on glycerol-3-phosphate dehydrogenase thermostability was evaluated by comparing the parameters of obtained regression models. At the physiological temperature range of 20–40 °C, the fluorescence ratios and their growth rates at oxaloacetate concentrations of 0.5-8 µM (p < 0.001) were found to be lower than those of controls. Higher average fluorescence ratios and growth rates were detected at oxaloacetate concentrations of 16 µM (p < 0.001). When heating over 45 °C, no differences were found in the average denaturation temperature of glycerol-3-phosphate dehydrogenase between the oxaloacetate concentrations studied. The experiment demonstrates the change in the total amplitude of the fluorescence signal in the process of heating the enzyme. The effect of biologically active compounds on fluorescence ratio differs in the area of low concentrations (0.5 and 1 µM) and high concentrations (16 µM). Oxaloacetate at a final concentration of 0.5–1 µM contributes to the thermodynamic stability of glycerol-3-phosphate dehydrogenase, while the concentration of 16 µM causes a decrease in its thermostability.


glycerol-3-phosphate dehydrogenase; oxaloacetate; differential scanning fluorimetry; conformation structure; mathematical modelling

Full Text:



1. E. L. Van Nostrand, S. C. Huelga, and G. W. Yeo, “Experimental and Computational Considerations in the Study of RNA-Binding Protein-RNA Interactions,” Advances in Experimental Medicine and Biology 907, 1–28 (2016).

2. E. A. Ryskina, N. A. Kolotyeva, F. N. Gilmiyarova, and N. N. Chernov, “Intermolecular interaction of proteins and small molecules (review),” European Journal of Natural History 3, 8–13 (2016).

3. K. Rooijers, C. M. Markodimitraki, F. J. Rang, S. S. de Vries, A. Chialastri, K. L. de Luca, D. Mooijman, S. S. Dey, and J. Kind, “Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells,” Nature Biotechnology 37(7), 766–772 (2019).

4. Q. Xu, R. L. Dunbrack Jr., “ProtCID: a data resource for structural information on protein interactions,” Nature Communications 11(1), 711 (2020).

5. Y. Mugabo, S. Zhao, A. Seifried, S. Gezzar, A. Al-Mass, D. Zhang, J. Lamontagne, C. Attane, P. Poursharifi, J. Iglesias, E. Joly, M.-L. Peyot, A. Gohla, S. R. Murthy Madiraju, and M. Prentki, “Identification of a mammalian glycerol-3-phosphate phosphatase: role in metabolism and signaling in pancreatic beta-cells and hepatocytes,” Proceedings of the National Academy of Sciences 113(4), 430–439 (2016).

6. E. Possik, S. R. Murthy Madiraju, and M. Prentki, “Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases,” Biochimie 143, 18–28 (2017).

7. P. K. Langston, A. Nambu, J. Jung, M. Shibata, H. I. Aksoylar, J. Lei, P. Xu, M. T. Doan, H. Jiang, M. R. MacArthur, X. Gao, Y. Kong, E. T. Chouchani, J. W. Locasale, N. W. Snyder, and T. Horng, “Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses,” Nature Immunology 20(9), 1186–1195 (2019).

8. J. Lu, Z. Xu, H. Duan, H. Ji, Z. Zhen, B. Li, H. Wang, H. Tang, J. Zhou, T. Guo, B. Wu, D. Wang, Y. Liu, Y. Niu, and R. Zhang, “Tumor-associated macrophage interleukin-β promotes glycerol-3-phosphate dehydrogenase activation, glycolysis and tumorigenesis in glioma cells,” Cancer Science 111(6), 1979–1990 (2020).

9. C. Zhou, J. Yu, M. Wang, J. Yang, H. Xiong, H. Huang, D. Wu, S. Hu, Y. Wang, X.-Z. Chen, and J. Tang, “Identification of glycerol-3-phosphate dehydrogenase 1 as a tumour suppressor in human breast cancer,” Oncotarget 8(60), 101309–101324 (2017).

10. P. Rusu, C. Shao, A. Neuerburg, A. A. Acikgöz, Y. Wu, P. Zou, P. Phapale, T. S. Shankar, K. Döring, S. Dettling, H. Körkel-Qu, G. Bekki, B. Costa, T. Guo, O. Friesen, M. Schlotter, M. Heikenwalder, D. F. Tschaharganeh, B. Bukau, G. Kramer, P. Angel, C. Herold-Mende, B. Radlwimmer, and H.-K. Liu, “GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile,” Cell Stem Cell 25(2), 241–257 (2019).

11. F. Lorenzetti, A. M. Capiglioni, R. A. Marinelli, M. C. Carrillo, and M. de Luján Alvarez, “Hepatic glycerol metabolism is early reprogrammed in rat liver cancer development,” Biochimie 170, 88–93 (2020).

12. D. L. Nelson, M. M. Cox, and A. L. Lehninger, Lehninger principles of biochemistry, W. H. Freeman, New York, 2013.

13. F. Campos, T. Sobrino, P. Ramos-Cabrer, and J. Castillo, “Oxaloacetate: A novel neuroprotective for acute ischemic stroke,” The International Journal of Biochemistry & Cell Biology 44(2), 262–265 (2012).

14. R. H. Swerdlow, R. Bothwell, L. Hutfles, J. M. Burns, and G. A. Reed, “Tolerability and pharmacokinetics of oxaloacetate 100 mg capsules in Alzheimer’s subjects,” BBA Clinical 5, 120–123 (2016).

15. H. M. Wilkins, S. Koppel, S. M. Carl, S. Ramanujan, I. Weidling, M. L. Michaelis, E. K. Michaelis, and R. H. Swerdlow, “Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure,” Journal of Neurochemistry 137(1), 76–87 (2016).

16. G. R. Grimsley, S. R. Trevino, R. L. Thurlkill, and J. M. Scholtz, “Determining the conformational stability of a protein from urea and thermal unfolding curves,” Current Protocols in Protein Science 71(1), 28.4.1–28.4.14 (2013).

17. C. G. Alexander, R. Wanner, C. M. Johnson, D. Breitsprecherc, G. Winterb, S. Duhrc, P. Baaskec, and N. Fergusona, “Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings,” Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics 1844(12), 2241–2250 (2014).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+