Concentration Dependent Thermal Diffusivity of Mn3O4 Nanoparticles Using Dual Beam Thermal Lens Technique

Jayaprasad K. V. (Login required)
Cochin University of Science and Technology, India

Titu Thomas
Cochin University of Science and Technology, India

Manu Vaishakh
Cochin University of Science and Technology, India

Sheenu Thomas
Cochin University of Science and Technology, India

Paper #7784 received 25 Feb 2023; revised manuscript received 15 Jul 2023; accepted for publication 17 Jul 2023; published online 28 Aug 2023.


Concentration dependent thermal diffusivity measurement of Mn3O4 nanoparticles dispersed in ethylene glycol has been studied using dual beam mode mismatched thermal lens technique. The results reveal that the thermal diffusivity of the nanofluid depends on the concentration of Mn3O4 nanoparticles. The thermal diffusivity values were found to be greater than that of ethylene glycol for all sample concentrations. The samples with this high value of thermal diffusivity can be used as coolant for thermoelectric devices. The non-radiative decay process induced by defect states in the material, size and shape of nanoparticles etc. are the factors that control the thermal diffusivity of the nanoparticles dispersed in a solvent. The variation in thermal diffusivity of the Mn3O4 nanofluid is explained on the basis of changes in absorption and emission spectra with sample concentration. It is found that thermal diffusivity is inversely related with the emission intensity.


Mn3O4 nanoparticles; thermal diffusivity; coolant

Full Text:



1. A. Dey, S. Hadavale, M. A. S. Khan, P. More, P. K. Khanna, A. K. Sikder, and S. Chattopadhyay, “Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material,” Dalton Transactions 44(44), 19248–19255 (2015).

2. D. Finkelstein-Shapiro, P. Tarakeshwar, T. Rajh, and V. Mujica, “Photoinduced Kinetics of SERS in Bioinorganic Hybrid Systems. A Case Study: Dopamine− TiO2,” The Journal of Physical Chemistry B 114(45), 14642–14645 (2010).

3. E. A. Cherney, “Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications,” IEEE Transactions on Dielectrics and Electrical Insulation 12(6), 1108–1115 (2005).

4. J. Li, G. Lu, G. Wu, D. Mao, Y. Guo, Y. Wang, and Y. Guo, “Effect of TiO2 crystal structure on the catalytic performance of Co3O 4/TiO2 catalyst for low-temperature CO oxidation,” Catalysis Science & Technology 4(5), 1268–1275 (2014).

5. R. Bussamara, W. W. M. Melo, J. D. Scholten, P. Migowski, G. Marin, M. J. M. Zapata, G. Machado, S. R. Teixeira, M. A. Novak, and J. Dupont, “Controlled synthesis of Mn3O4 nanoparticles in ionic liquids,” Dalton Transactions 42(40), 14473–14479 (2013).

6. S. Kumar, R. Kaur, R. Rajput, and M. Singh, “Bio pharmaceutics classification system (BCS) class IV drug nanoparticles: Quantum leap to improve their therapeutic index,” Advanced Pharmaceutical Bulletin 8(4), 617 (2018).

7. L. Li, K. H. Seng, H. Liu, I. P. Nevirkovets, and Z. Guo, “Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior,” Electrochimica Acta 87, 801–808 (2013).

8. W.-N. Li, J. Yuan, X.-F. Shen, S. Gomez-Mower, L.-P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure-and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Advanced Functional Materials 16(9), 1247–1253 (2006).

9. S. M. S. Murshed, C. A. N. de Castro, “Superior thermal features of carbon nanotubes-based nanofluids–A review,” Renewable and Sustainable Energy Reviews 37, 155–167 (2014).

10. W. H. Azmi, K. V. Sharma, R. Mamat, G. Najafi, and M. S. Mohamad, “The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–A review,” Renewable and Sustainable Energy Reviews 53, 1046–1058 (2016).

11. X.-Q. Wang, A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences 46(1), 1–19 (2007).

12. N. Sizochenko, M. Syzochenko, A. Gajewicz, J. Leszczynski, and T. Puzyn, “Predicting physical properties of nanofluids by computational modeling,” The Journal of Physical Chemistry C 121(3), 1910–1917 (2017).

13. M. I. Pryazhnikov, A. V. Minakov, V. Ya. Rudyak, and D. V. Guzei, “Thermal conductivity measurements of nanofluids,” International Journal of Heat and Mass Transfer 104, 1275–1282 (2017).

14. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” Journal of Applied Physics 75(8), 3732–3737 (1994).

15. F. Cernuschi, A. Figari, and L. Fabbri, “Thermal wave interferometry for measuring the thermal diffusivity of thin slabs,” Journal of Materials Science 35, 5891–5897 (2000).

16. Y. Nagasaka, A. Nagashima, “Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method,” Review of Scientific Instruments 52(2), 229–232 (1981).

17. P. Charpentier, F. Lepoutre, and L. Bertrand, “Photoacoustic measurements of thermal diffusivity description of the “drum effect”,” Journal of Applied Physics 53(1), 608–614 (1982).

18. J. A. Balderas-Lopez, A. Mandelis, “Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal-wave cavity,” Review of Scientific Instruments 72(6), 2649–2652 (2001).

19. W. Czarnetzki, W. Roetzel, “Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity,” International Journal of Thermophysics 16, 413–422 (1995).

20. J. H. Rohling, J. Mura, J. R. D. Pereira, A. J. Palangana, A. N. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens temperature scanning for quantitative measurements in complex fluids,” Brazilian Journal of Physics 32(2b), 575–583 (2002).

21. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” Journal of the Optical Society of America B 23(7), 1408–1413 (2006).

22. M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Review of Scientific Instruments 67(1), 1–18 (1996).

23. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Journal of Applied Physics 36(1), 3–8 (1965).

24. M. A. Proskurnin, D. S. Volkov, T. A. Gor’kova, S. N. Bendrysheva, A. P. Smirnova, and D. A. Nedosekin, “Advances in thermal lens spectrometry,” Journal of Analytical Chemistry 70, 249–276 (2015).

25. R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, Jr., and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Advances 1(2), 022154 (2011).

26. L. Thomas, J. John, N. A. George, and A. Kurian, “Silver nanoparticle assisted urine sugar determination using thermal lens spectroscopy,” Measurement Science and Technology 25(11), 115701 (2014).

27. J. Shen, D. L. Roger, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chemical Physics 165(2–3), 385–396 (1992).

28. S. Prasanth, D. R. Raj, R. K. Thomas, T. V. Vineeshkumar, and C. Sudarsanakumar, “A systematic investigation on the interaction of l-cysteine functionalised Mn3O4 nanoparticles with lysozyme,” RSC Advances 6(107), 105010–105020 (2016).

29. M. Perachiselvi, M. S. Bagavathy, J. J. Samraj, E. Pushpalaksmi, and G. Annadurai, “Synthesis and Characterization of Mn3O4 Nanoparticles for Biological Studies,” Applied Ecology and Environmental Sciences 8(5), 273–277 (2020).

30. J. A. Balderas-Lopez, A. Mandelis, and J. A. Garcia, “Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids,” Review of Scientific Instruments 71(7), 2933–2937 (2000).

31. S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, “Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method,” Review of Scientific Instruments 73(7), 2773–2780 (2002).

32. L. Huang, L.-S. Liu, “Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method,” Journal of Food Engineering 95(1), 179–185 (2009).

33. R. Herrera-Aquino, J. L. Jiménez-Pérez, D. C. Altamirano-Juárez, G. López-Gamboa, Z. N. Correa-Pacheco, and R. Carbajal-Valdéz, “Green synthesis of silver nanoparticles contained in centrifuged citrus oil and their thermal diffusivity study by using thermal lens technique,” International Journal of Thermophysics 40, 3 (2019).

34. N. S. Basheer, B. R. Kumar, A. Kurian, and S. D. George, “Thermal conductivity measurement of organic solvents incorporated with silver nanoparticle using photothermal techniques,” in IOP Conference Series: Materials Science and Engineering 73(1), 012039 (2015).

35. M. Ramya, T. K. Nideep, M. M. Varier, V. P. N. Nampoori, and M. Kailasnath, “Concentration dependent thermo-optic properties of yellow emissive ZnO quantum dots,” Materials Research Express 6(12), 126208 (2019).

36. T. K. Nideep, M. Ramya, V. P. N. Nampoori, and M. Kailasnath, “The size dependent thermal diffusivity of water soluble CdTe quantum dots using dual beam thermal lens spectroscopy,” Physica E: Low-dimensional Systems and Nanostructures 116, 113724 (2020).

37. V. M. Lenart, N. G. C. Astrath, R. F. Turchiello, G. F. Goya, and S. L. Gómez, “Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique,” Journal of Applied Physics 123(8), 085107 (2018).

38. J. John, L. Thomas, B. R. Kumar, A. Kurian, and S. D. George, “Shape dependent heat transport through green synthesized gold nanofluids,” Journal of Physics D: Applied Physics 48(33), 335301 (2015).

39. V. Anupama, S. Udayan, P. N. Musfir, V. P. N. Nampoori, and S. Thomas, “Enhancement of defect states assisted thermal diffusivity in solution-processed GeSeSb chalcogenide glass matrix on silver incorporation,” Journal of Non-Crystalline Solids 503–504, 151–157 (2019).

40. J. Koo, C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” International Communications in Heat and Mass Transfer 32(9), 1111–1118 (2005).

41. M. Joseph, B. Anugop, K. R. Vijesh, Vipin Balan, V. P. N. Nampoori, and M. Kailasnath, “Morphology and concentration-dependent thermal diffusivity of biofunctionalized zinc oxide nanostructures using dual-beam thermal lens technique,” Materials Letters 323, 132599 (2022).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+