Features of the Secondary Structure of BSA – Containing Protein Complexes, Isolated from Milk of High Temperature Processing

Ivan S. Shatalov (Login required)
Faculty of Food Biotechnologies and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Russia

Aleksandrina S. Shatalova
Faculty of Food Biotechnologies and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Russia

Lyudmila V. Plotnikova
Department of Physics, Saint Petersburg State University, Russia

Aleksandr G. Shleikin
Research and Educational Center of Chemical Engineering and Biotechnology, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Russia

Paper #3413 received 12 Apr 2021; accepted for publication 3 Jun 2021; published online 30 Jun 2021.

DOI: 10.18287/JBPE21.07.020307


Present paper describes features of the component composition in the secondary structure of BSA–containing protein complexes isolated from ultra-pasteurized (UHT), sterilized (SHT) and powdered (DRY) milk. We have found β – sheets to present in all complexes investigated. However, the smallest number of such components have been revealed in samples derived from sterilized milk with less β – sheets in 1621–1626 cm–1 region. The composition study of the complexes originated from UHT milk has shown random coils to be the rarest in them. When considering the structure of the complexes isolated from powdered milk, the α – 310 – heliсes were more characteristic for such samples, then the α – helix. Moreover, during spray–drying, the number of random structures increase with a simultaneous decrease in the number of β – sheets, whereas in UHT – and SHT – processing the number of random structures is inversely proportional to the number of α – helices.


milk protein complexes; heat treatment; BSA; secondary structure

Full Text:



1. S. N. Moejes, A. J. B. van Boxtel, “Energy saving potential of emerging technologies in milk powder production,” Trends in Food Science & Technology 60, 31–42 (2017).

2. L. Malafronte, L. Ahrné, E. Schuster, F. Innings, and A. Rasmuson, “Exploring drying kinetics and morphology of commercial dairy powders,” Journal of Food Engineering 158, 58–65 (2015).

3. Y. Lin, Y. Liu, L. Wang, Y. Xie, Z. Gao, and S. Wang, “Optimization of drying conditions and components to reduce wall sticking during spray drying of infant formula milk,” International Journal of Agricultural and Biological Engineering 11(2), 214–218 (2018).

4. E. A. Permyakov, α-Lactalbumin, Nova, New York (2005). ISBN 1-59454-107-8.

5. P. E. Morgan, T. M. Treweek, R. A. Lindner, W. E. Price, and J. A. Carver, “Casein proteins as molecular chaperones,” Journal of Agricultural and Food Chemistry 53(7), 2670–2683 (2005).

6. V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin,” PLoS One 11(4), e0153495 (2016).

7. K. Murayama, M. Tomida, “Heat-Induced Secondary Structure and Conformation Change of Bovine Serum Albumin Investigated by Fourier Transform Infrared Spectroscopy,” Biochemistry 43(36), 11526–11532 (2004).

8. S. Verruck, S. Sartor, F. B. Marenda, E. L. da Silva Barros, C. Camelo-Silva, M. H. Machado Canella, and E. S. Prudencio, “Influence of Heat Treatment and Microfiltration on the Milk Proteins Properties,” Advances in Food Technology and Nutritional Sciences 5(2), 54–66 (2019).

9. S. K. Baier, E. A. Decker, and D. J. McClements, “Impact of glycerol on thermostability and heat-induced gelation of bovine serum albumin,” Food Hydrocolloids 18(1), 91–100 (2004).

10. H. B. Wijayanti, N. Bansal, and H. C. Deeth, “Stability of Whey Proteins during Thermal Processing: A Review,” Comprehensive Reviews in Food Science and Food Safety 13(6), 1235–1251 (2014).

11. G. B. Jameson, J. J. Adams, and L. K. Creamer, “Flexibility, functionality and hydrophobicity of bovine β-lactoglobulin,” International Dairy Journal 12(4), 319–329 (2002).

12. K. Ponniah, T. S. Loo, P. J. B. Edwards, S. M. Pascal, G. B. Jameson, and G. E. Norris, “The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants A and B in Escherichia coli for NMR studies,” Protein Expression and Purification 70(2), 283–289 (2010).

13. R. N. W. Zeiler, P. G. Bolhuis, “Exposure of thiol groups in the heat-induced denaturation of β-lactoglobulin,” Molecular Simulation 41(10–12), 1006–1014 (2015).

14. E. N. C. Mills, A. S. Tatham, “Allergenes,” in Encyclopedia of Food Sciences and Nutrition, B. Caballero, P. M. Finglas, and F. Toldrá (eds.), 2nd ed., Academic Press, New York, 143–150 (2003). ISBN: 978-0-12-227055-0.

15. D. Mercadante, L. D. Melton, G. E. Norris, T. S. Loo, M. A. K. Williams, R. C. J. Dobson, and G. B. Jameson, “Bovine β-Lactoglobulin Is Dimeric Under Imitative Physiological Conditions: Dissociation Equilibrium and Rate Constants over the pH Range of 2.5–7.5,” Biophysical Journal 103(2), 303–312 (2012).

16. P. Havea, H. Singh, and L. K. Creamer, “Characterization of heat-induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment,” Journal of Dairy Research 68(3), 483–497 (2001).

17. A. M. Gil, “Nuclear Magnetic Resonance,” in Encyclopedia of Food and Health, F. T. B. Caballero, P. M. Finglas (Eds.), Academic Press, New York (2003). ISBN: 978-0-12-384953-3.

18. P. Havea, H. Singh, and L. K. Creamer, “Formation of New Protein Structures in Heated Mixtures of BSA and α-Lactalbumin,” Journal of Agricultural and Food Chemistry 48(5), 1548–1556 (2000).

19. L. Donato, F. Guyomarc’h, “Formation and properties of the whey protein/κ-casein complexes in heated skim milk – A review,” Dairy Science and Technology 89(1), 3–29 (2009).

20. F. Chevalier, A. L. Kelly, “Proteomic Quantification of Disulfide-Linked Polymers in Raw and Heated Bovine Milk,” Journal of Agricultural and Food Chemistry 58(12), 7437–7444 (2010).

21. M. S. Mahomud, N. Katsuno, and T. Nishizu, “Formation of soluble protein complexes and yoghurt properties influenced by the addition of whey protein concentrate,” Innovative Food Science & Emerging Technologies 44, 173–180 (2017).

22. A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradović, “Intrinsic disorder and protein function,” Biochemistry 41(21), 6573–6582 (2002).

23. T. F. Kumosinski, E. M. Brown, and H. M. Farrell, “Three-Dimensional Molecular Modeling of Bovine Caseins: An Energy-Minimized β-Casein Structure,” Journal of Dairy Science 76(4), 931–945 (1993).

24. T. K. Głąb, J. Boratyński, “Potential of Casein as a Carrier for Biologically Active Agents,” Topics in Current Chemistry 375(4), 1–20 (2017).

25. T. M. Treweek, D. C. Thorn, W. E. Price, and J. A. Carver, “The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein,” Archives of Biochemistry and Biophysics 510(1), 42–52 (2011).

26. M. Ehrnsperger, S. Gräber, M. Gaestel, and J. Buchner, “Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation,” The EMBO Journal 16(2), 221–229 (1997).

27. A. M. Andreeva, A. S. Vasiliev, I. Y. Toropygin, D. V. Garina, N. Lamash, and A. Filippova, “Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus,” Fish physiology and biochemistry 45(5), 1717–1730 (2019).

28. J. R. Powell, F. M. Wasacz, and R. J. Jakobsen, “An Algorithm for the Reproducible Spectral Subtraction of Water from the FT-IR Spectra of Proteins in Dilute Solutions and Adsorbed Monolayers,” Applied Spectroscopy 40(3), 339–344 (1986).

29. J. Kong, S. Yu, “Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures,” Acta Biochimica et Biophysica Sinica 39(8), 549–559 (2007).

30. P. Garidel, H. Schott, “Fourier-Transform Midinfrared Spectroscopy for Analysis and Screening of Liquid Protein Formulations Part 2: Detailed Analysis and Applications,” Bioprocess International 1, 48–55 (2006).

31. A. Barth, C. Zscherp, “What vibrations tell about proteins,” Quarterly Reviews of Biophysics 35(4), 369-430 (2002).

32. R. Khurana, A. L. Fink, “Do parallel beta-helix proteins have a unique fourier transform infrared spectrum?” Biophysical Journal 78(2), 994–1000 (2000).

33. A. Dong, W. S. Caughey, “Infrared methods for study of hemoglobin reactions and structures,” Methods in Enzymology 232, 139–175 (1994).

34. R. I. Litvinov, D. A. Faizullin, Y. F. Zuev, and J. W. Weisel, “The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots,” Biophysical Journal 103, 1020–1027 (2012).

35. A. Roque, I. Iloro, I. Ponte, J. L. R. Arrondo, and P. Suau, “DNA-induced secondary structure of the carboxyl-terminal domain of histone H1,” Journal of Biological Chemistry 280(37), 32141–32147 (2005).

36. S. Venkataramani, J. Truntzer, and D. R. Coleman, “Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study,” Journal of Pharmacy & Bioallied Sciences 5(2), 148–153 (2013).

37. C.-Y. Lin, M.-C. Yang, “Improved p-Value Tests for Comparing Two Independent Binomial Proportions,” Communications in Statistics-Simulation and Computation 38(1), 78–91 (2008).

38. M. D. C. Martínez-Ballesta, P. García-Gomez, L. Yepes-Molina, A. L. Guarnizo, J. A. Teruel, and M. Carvajal, “Plasma membrane aquaporins mediates vesicle stability in broccoli,” PLoS One 13(2), e0192422 (2018).

39. L. M. Miller, M. W. Bourassa, and R. J. Smith, “FTIR spectroscopic imaging of protein aggregation in living cells,” Biochimica et Biophysica Acta (BBA) – Biomembranes 1828(10), 2339–2346 (2013).

40. M. Svensson, J. Fast, A.-K. Mossberg, C. Düringer, L. Gustafsson, O. Hallgren, C. L. Brooks, L. Berliner, S. Linse, and С. Svanborg, “Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells),” Protein Science 12(12), 2794–2804 (2003).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+