Laser Applications for Estimation of Microbial Activity and Investigation of NIR Skin Autofluorescence

Alexey Lihachev (Login required)
University of Latvia, Institute of Atomic Physics and Spectroscopy, Biophotonics Laboratory, Riga, Latvia

Dmitrijs Bļizņuks
Riga Technical University, Faculty of Computer Science and Information Technology, Riga, Latvia

Jānis Liepiņš
University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia

Ilze Lihacova
University of Latvia, Institute of Atomic Physics and Spectroscopy, Biophotonics Laboratory, Riga, Latvia

Paper #3454 received 23 Aug 2021; revised manuscript received 20 Sep 2021; accepted for publication 23 Sep 2021; published online 4 Nov 2021.

DOI: 10.18287/JBPE21.07.040305


The presented paper demonstrates the ongoing results of the joint research of University of Latvia and Riga Technical University aimed at the development of new laser based optical methods and technologies for fast evaluation of microbial activity in solid media. The second part of the paper represents the results of joint research conducted together with Katya Borisova during our visit to the Institute of Electronics, Bulgarian Academy of Sciences (Bulgaria, Sofia).


laser speckles; microorganisms; near infrared skin autofluorescence; melanoma cells

Full Text:



1. J. Yoon, K. Lee, and Y. Park, “A simple and rapid method for detecting living microorganisms in food using laser speckle decorrelation,” arXiv:1603.07343 (2016).

2. H. Loutfi, F. Pellen, B. Le Jeune, R. Lteif, M. Kallassy, G. Le Brun, and M. Abboud, “Real-time monitoring of bacterial growth kinetics in suspensions using laser speckle imaging,” Scientific Reports 10(1), 408 (2020).

3. H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Frontiers in Microbiology 5, 537 (2014).

4. H. C. Grassi, L. C. García, M. L. Lobo-Sulbarán, A. Velásquez, F. A. Andrades-Grassi, H. Cabrera, J. E. Andrades-Grassi, and E. D. J. Andrades, “Quantitative laser biospeckle method for the evaluation of the activity of trypanosoma cruzi using VDRL plates and digital analysis,” PLoS Neglected Tropical Diseases 10(12), e0005169 (2016).

5. H. C. Grassi, A. Velásquez, O. M. Belandria, M. L. Lobo-Sulbarán, J. E. Andrades-Grassi, H. Cabrera, and E. D. Andrades, “Biospeckle laser digital image processing for quantitative and statistical evaluation of the activity of Ciprofloxacin on Escherichia coli K-12,” Laser Physics 29(7), 075603 (2019).

6. K. Zhou, C. Zhou, A. Sapre, J. H. Pavlock, A. Weaver, R. Muralidharan, J. Noble, J. Kovac, Z. Liu, and A. Ebrahimi, “Dynamic laser speckle imaging meets machine learning to enable rapid antibacterial susceptibility testing (DyRAST),” ACS Sensors 5(10), 3140–3149 (2020).

7. I. A. Bratchenko, Y. A. Khristoforova, L. A. Bratchenko, A. A. Moryatov, S. V. Kozlov, E. G. Borisova, and V. P. Zakharov, “Optical Biopsy of Amelanotic Melanoma with Raman and Autofluorescence Spectra Stimulated by 785 nm Laser Excitation,” Journal of Biomedical Photonics & Engineering 7(2), 020308 (2021).

8. Z. Huang, H. Lui, D. I. McLean, M. Korbelik, and H. Zeng, “Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues,” Photochemistry and Photobiology 81(5), 1219–1226 (2005).

9. E. G. Borisova, I. A. Bratchenko, Y. A. Khristoforova, L. A. Bratchenko, T. I. Genova, A. I. Gisbrecht, A. A. Moryatov, S. V. Kozlov, P. P. Troyanova, and V. P. Zakharov, “Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions,” Optical Engineering 59(6), 061616 (2020).

10. S. Wang, J. Zhao, H. Lui, Q. He, and H. Zeng, “In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results,” Skin Research and Technology 19(1), 20–26 (2013).

11. M. Saif, W. J. Kwanten, J. A. Carr, I. X. Chen, J. M. Posada, A. Srivastava, J. Zhang, Y. Zheng, M. Pinter, S. Chatterjee, S. Softic, C. R. Kahn, K. van Leyen, O. T. Bruns, R. K. Jain, and M. G. Bawendi, “Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin,” Nature Biomedical Engineering 4(8), 801–813 (2020).

12. I. Balmages, J. Liepins, S. Zolins, D. Bliznuks, I. Lihacova, and A. Lihachev, “Laser speckle imaging for early detection of microbial colony forming units,” Biomedical Optics Express 12(3), 1609–1620 (2021).

13. I. Balmages, D. Bliznuks, J. Liepins, S. Zolins, and A. Lihachev, “Laser speckle time-series correlation analysis for bacteria activity detection,” Proceedings of SPIE 11359, 113591D (2020).

© 2014-2021 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+