Optical Properties of Perfused Rat Liver Tissues

Ksenia Kandurova (Login required)
Orel State University, Russia

Alexander Palalov
Orel State University, Russia

Evgeniya Seryogina
Orel State University, Russia

Viktor Dremin
Orel State University, Russia

Andrey Dunaev
Orel State University, Russia

Elena Potapova
Orel State University, Russia

Paper #3561 received 28 Oct 2022; revised manuscript received 29 Nov 2022; accepted for publication 30 Nov 2022; published online 9 Dec 2022.

DOI: 10.18287/JBPE23.09.010301


In this work, we demonstrate the results of measuring the optical properties of rat liver tissue slices after the liver itself underwent the perfusion procedure with an isotonic solution. The approach is suggested as a means to attenuate the influence of blood absorption on recorded characteristics and demonstrates its effectiveness in changing the composition of recorded spectra in the visible range. The data obtained seem promising to be used to upgrade the proposed methodology and apply the results for the diagnosis and modeling of light-tissue interaction in liver under healthy and pathological conditions.



liver; perfusion; optical properties; spectrophotometry

Full Text:



1. J. A. Kim, D. J. Wales, and G.-Z. Yang, “Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives,” Progress in Biomedical Engineering 2(4), 42001 (2020).

2. A. B. Shrirao, R. S. Schloss, Z. Fritz, M. V. Shrirao, R. Rosen, and M. L. Yarmush, “Autofluorescence of blood and its application in biomedical and clinical research,” Biotechnology and Bioengineering 118(12), 4550–4576 (2021).

3. Z. He, P. Wang, and X. Ye, “Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects,” BioMedical Engineering OnLine 20(1), 5 (2021).

4. V. Dremin, E. Potapova, E. Zherebtsov, K. Kandurova, V. Shupletsov, A. Alekseyev, A. Mamoshin, and A. Dunaev, “Optical percutaneous needle biopsy of the liver: A pilot animal and clinical study,” Scientific Reports 10(1), 14200 (2020).

5. E. A. Zherebtsov, E. V. Potapova, A. V. Mamoshin, V. V. Shupletsov, K. Y. Kandurova, V. V. Dremin, A. Y. Abramov, and A. V. Dunaev, “Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma,” Biomedical Optics Express 13(2), 633–646 (2022).

6. R. Alfano, Y. Pu, “Optical biopsy for cancer detection,” Chapter 11 in Lasers for Medical Applications, H. Jelínková (ed.), Woodhead Publishing Limited, Cambridge, 325–367 (2013).

7. K. Kandurova, V. Dremin, E. Zherebtsov, E. Potapova, A. Alyanov, A. Mamoshin, Y. Ivanov, A. Borsukov, and A. Dunaev, “Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions,” Applied Sciences 9(2), 217 (2019).

8. E. Potapova, V. Dremin, E. Zherebtsov, A. Mamoshin, and A. Dunaev, “Multimodal Optical Diagnostic in Minimally Invasive Surgery,” Chapter 11 in Multimodal Optical Diagnostics of Cancer, V. V. Tuchin, J. Popp, and V. Zakharov (eds.), Springer, Cham, Switzerland, 397–424 (2020).

9. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, vol. 1: Light-Tissue Interaction, 2nd ed., SPIE Press, Bellingham, USA (2016). ISBN: 9781628419092.

10. A. C. Croce, G. Bottiroli, “Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis,” European Journal of Histochemistry 58(4), 320–337 (2014).

11. J. W. Spliethoff, L. L. de Boer, M. A. J. Meier, W. Prevoo, J. de Jong, K. Kuhlmann, T. M. Bydlon, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “In vivo characterization of colorectal metastases in human liver using diffuse reflectance spectroscopy: Toward guidance in oncological procedures,” Journal of Biomedical Optics 21(9), 097004 (2016).

12. A. Litvinenko, M. Garazdyuk, V. Bachinsky, O. Vanchulyak, A. Ushenko, Yu. Ushenko, A. Dubolazov, P. Gorodensky, O. Yatsko, B. Lin, and Z. Chen, “Multiparametric polarization histology in the detection of traumatic changes in the optical anisotropy of biological tissues,” Proceedings of SPIE 11510, 115102O (2020).

13. F. Braun, R. Schalk, M. Nachtmann, A. Hien, R. Frank, T. Beuermann, F.-J. Methner, B. Kränzlin, M. Rädle and N. Gretz, “A customized multispectral needle probe combined with a virtual photometric setup for in vivo detection of Lewis lung carcinoma in an animal model,” Measurement Science and Technology 30(10), 104001 (2019).

14. E. V. Potapova, E. S. Seryogina, V. V. Dremin, D. D. Stavtsev, I. O. Kozlov, E. A. Zherebtsov, A. V. Mamoshin, Yu. V. Ivanov, and A. V. Dunaev, “Laser speckle contrast imaging of blood microcirculation in pancreatic tissues during laparoscopic interventions,” Quantum Electronics 50(1), 33–40 (2020).

15. S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 58(11), R37 (2013).

16. M. Mesradi, A. Genoux, V. Cuplov, D. Abi-Haidar, S. Jan, I. Buvat, and F. Pain, “Experimental and analytical comparative study of optical coefficient of fresh and frozen rat tissues,” Journal of Biomedical Optics 18(11), 117010 (2013).

17. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences 4(01), 9–38 (2011).

18. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” Journal of Biomedical Optics 17(9), 090901 (2012).

19. J. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C.-T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 29(3), 205–212 (2001).

20. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, and V. V. Tuchin, “Measuring optical properties of human liver between 400 and 1000 nm,” Quantum Electronics 49(1), 13 (2019).

21. P. Lanka, L. Bianchi, A. Farina, M. De Landro, A. Pifferi, and P. Saccomandi, “Estimation of porcine pancreas optical properties in the 600–1100 nm wavelength range for light-based therapies,” Scientific Reports 12(1), 14300 (2022).

22. H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” Journal of Biomedical Optics 22(1), 010503 (2017).

23. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers in Medical Science 29(2), 453–479 (2014).

24. A. S. Shanshool, E. N. Lazareva, O. Hamdy, and V. V. Tuchin, “Optical Properties and Fluence Distribution in Rabbit Head Tissues at Selected Laser Wavelengths,” Materials 15(16), 5696 (2022).

25. E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” Journal of Biomedical Optic 11(6), 064026 (2006).

26. A. N. Bashkatov, Br. Jiang, J. Novak, and A. N. Yaroslavsky, “Measurement of tissue optical properties in the context of tissue optical clearing,” Journal of Biomedical Optics 23(9), 91416 (2018).

27. M. S. Enevoldsen, O. Skovgaard, and P. E. Andersen, “A combined mathematical-physical model of laser-induced thermotherapy (LITT),” in European Conference on Biomedical Optics, Optica Publishing Group, 7373_15 (2009).

28. C. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht, G. Müller, and H. J. Buhr, “Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range,” Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 23(4), 194–203 (1998).

29. R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. M. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomedical Optics Express 2(3), 600–614 (2011).

30. E. A. Zherebtsov, K. Y. Kandurova, E. S. Seryogina, I. O. Kozlov, V. V. Dremin, A. I. Zherebtsova, A. V. Dunaev, and I. Meglinski, “The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence,” Proceedings of SPIE 10336, 1033608 (2017).

31. V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, A. Y. Vinokurov, I. N. Novikova, A. I. Zherebtsova, K. S. Litvinova, and A. V. Dunaev, “The development of attenuation compensation models of fluorescence spectroscopy signals,” Proceedings of SPIE 9917, 99170Y (2016).

32. M. Bessems, N. A. ‘t Hart, R. Tolba, B. M. Doorschodt, H. G. D. Leuvenink, R. J. Ploeg, T. Minor, and T. M. van Gulik, “The isolated perfused rat liver: standardization of a time-honoured model,” Laboratory Animals 40(3), 236–246 (2006).

33. J. Aiken, L. Cima, B. Schloo, D. Mooney, L. Johnson, R. Langer, and J. P.Vacanti, “Studies in rat liver perfusion for optimal harvest of hepatocytes,” Journal of Pediatric Surgery 25(1), 140–145 (1990).

34. M. Shulman, Y. Nahmias, “Long-term culture and coculture of primary rat and human hepatocytes,” Chapter 17 in Epithelial Cell Culture Protocols, S. H. Randell, M. L. Fulcher (eds.), Humana Press, Totowa, USA, 287–302 (2012).

35. R. I. Freshney (ed.), Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 7th ed., John Wiley & Sons, Hoboken, USA (2015). ISBN: 978-1-118-87364-9.

36. M. X. Pan, P. Y. Hu, Y. Cheng, L. Q. Cai, X. H. Rao, Y. Wang, and Y. Gao, “An efficient method for decellularization of the rat liver,” Journal of the Formosan Medical Association 113(10), 680–687 (2014).

37. OECD Principles of Good Laboratory Practice, Council of the Organisation for Economic Co-operation and Development, Paris, 1998 (accessed 17 October 2022). [https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/mc/chem(98)17&doclanguage=en].

38. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Applied Optics 32(4), 559–568 (1993).

39. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Applied Optics 28(12), 2325–2330 (1989).

40. D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human gallbladder tissue and bile,” Applied Optics 32(4), 586–591 (1993).

41. F. Baldini, P. Bechi, F. Cianchi, A. Falai, C. Fiorillo, and P. Nassi, “Analysis of the optical properties of bile,” Journal of Biomedical Optics 5(3), 321–329 (2000).

42. A. C. Croce, A. Ferrigno, G. Santin, M. Vairetti, and G. Bottiroli, “Bilirubin: an autofluorescence bile biomarker for liver functionality monitoring,” Journal of Biophotonics 7(10), 810–817 (2014).

43. S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” Journal of Biomedical Optics 22(3), 35009 (2017).

44. C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Journal of Medical and Biological Engineering 21(1), 7–14 (2001).

45. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli III, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 38(10), 913–919 (2006).

46. V. V. Tuchin (ed.), Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed., SPIE Press, Bellingham, USA (2015). ISBN: 9781628415179.

47. G. Naulaers, B. Meyns, M. Miserez, V. Leunens, S. Van Huffel, P. Casaer, and H. Devlieger, “Measurement of the liver tissue oxygenation by near-infrared spectroscopy,” Intensive Care Medicine 31(1), 138–141 (2005).

48. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” Journal of the Optical Society of America 41(5), 302–304 (1951).

49. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Journal of Physics D: Applied Physics 38(15), 2543 (2005).

50. J. L. Sandell, T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” Journal of Biophotonics 4(11–12), 773–787 (2011).

© 2014-2023 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+