Zernike phase spatial filter for measuring the aberrations of the optical structures of the eye
Paper #2468 received 2015.05.29; revised manuscript received 2015.06.23; accepted for publication 2015.06.25; published online 2015.06.30.
DOI: 10.18287/jbpe-2015-1-2-146
Abstract
Keywords
Full Text:
PDFReferences
1. M. S. Smirnov, “Measurement of the wave aberration of the human eye”, Biofizika 6, 776–795 (1961).
2. H. C. Howland, and B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye”, J. Opt. Soc. Am. 67(11), 1508–1518 (1977).
3. F. Berny, and S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments”, Optical Instruments and Techniques, 375–386 (1969).
4. P. Artal, J. Santamaría, and J. Bescós,“Retrieval of the wave aberration of human eyes from actual point-spread function data”, J. Opt. Soc. Am. 5(8), 1201–1206 (1988).
5. D. A. Atchison, “Invited review recent advances in measurement of monochromatic aberrations of human eyes”, Clin Exp Optom 88(1), 5–27 (2005). Crossref
6. A. S. Goncharov et al., “Modal tomography of aberrations of the human eye”, Laser Physics, 16(12), 1689–1695 (2006). Crossref
7. M. Lombardo, and G. Lombardo, “New methods and techniques for sensing the wave aberrations in human eyes”, Clin Exp Optom 92(3), 176–186 (2009). Crossref
8. P. Artal, “Optics of the eye and its impact in vision: a tutorial”, Advances in Optics and Photonics 6(3), 340–367 (2014). Crossref
9. G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors”, Opt. Eng. 31(6), 1311-1322 (1992). Crossref
10. J. Liang et al., “Objective measurement of the WA´s aberration of the human eye with the use of a Hartmann-Shack sensor”, J. Opt. Soc. Am. 11, 1949–1957 (1994). Crossref
11. American National Standards Institute, Inc. American National Standards for Ophthalmics – Methods for Reporting Optical Aberrations of Eyes. ANSI Z80.28 (2004).
12. International Organization for Standardization (ISO). Ophthalmic Optics and Instruments – Reporting Aberrations of the Human Eye. Geneva, Switzerland (2008).
13. R. A. Applegate et al., “Visual acuity as a function of Zernike mode and level of root mean square error”, Optom Vis Sci 80(2), 97–105 (2003). Crossref
14. D. L. Golovashkin et al., Computer Design of Diffractive Optics, Ed. by V. A. Soifer, Cambridge Inter. Scien. Pub. Ltd.& Woodhead Pub. Ltd., Cambridge (2012).
15. S. N. Khonina et al., “Experimental selection of spatial Gauss-Laguerre modes”, Optical Memory and Neural Networks 9(1), 69–74 (2000).
16. V. V. Koltyar, and S. N. Khonina, “Multi-order diffractive optical elements to process data”, Chap. 2 in Perspectives in Engineering Optics, K. Singh, V. K. Rastogi, Eds., pp. 47–56 Anita Publications,
17. Delhi (2003).
18. S. N. Khonina et al., “Generation and selection of laser beams represented by a superposition of two angular harmonics”, Journal of Modern optics, 51(5), 761–773 (2004). Crossref
19. V. V. Kotlyar et al., “Coherent field phase retrieval using a phase Zernike filter”, Computer Optics 17, 43–48 (1997).
20. S. N. Khonina et al., “Phase reconstruction using a Zernike decomposition filter”, Computer Optics 18, 52–56 (1998).
21. S. N. Khonina, V. V. Kotlyar, and Ya Wang, “Diffractive optical element matched with Zernike basis”, Pattern Recognition and Image Analysis 11(2), 442–445 (2001).
22. M. Born, and E. Wolf, Principlies of Optics, Pergamon Press, Oxford (1968).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+