Dendritic crystallogram images classification
Paper #2470 received 2015.05.30; revised manuscript received 2015.06.18; accepted for publication 2015.06.20; published online 2015.06.30.
DOI: 10.18287/jbpe-2015-1-2-135
Abstract
Keywords
Full Text:
PDFReferences
1. R. A. Paringer, and A. V. Kupriyanov, “Methods For Estimating Geometric Parameters of The Dendrite’s Crystallogramms,” Proceedings of 8th Open German-Russian Workshop “Pattern Recognition and Image Understanding”, 226-229 (2011).
2. R. A. Paringer, “Separation and Analysis of Dendrites on Images of Diagnostic Crystallograms of Biological Liquids,” Biomedsistems-2012, 105-108 (2012).
3. N. Y. Ilyasova, A. V. Kupriyanov, and R. A. Paringer, “Formation features for improving the quality of medical diagnosis based on the discriminant analysis methods,” Computer Optics 38(4), 851-856 (2014).
4. R. A. Paringer, and A. V. Kupriyanov, “The Method for Effective Clustering the Dendrite Crystallogram Images,” Electronic on-site Proceedings of 9th Open German-Russian Workshop on Pattern Recognition and Image Understanding (OGRW 2014) (2014).
5. R. A. Paringer, and A. V. Kupriyanov, “Research Methods for Classification of the Crystallogramms Images,” Proceedings of the 12th international conference “PRIP’2014”, 231-234 (2014).
6. K. Fukunaga, Introduction to the Image Discrimination Statistical Theory, Nauka, Moscow (1979) [in Russian].
© 2014-2025 Authors
Public Media Certificate (RUS). 12+