Tissue Optics and Photonics: Light-Tissue Interaction II

Valery V. Tuchin (Login required)
Saratov National Research State University, Russia
Institute of Precision Mechanics and Control RAS, Saratov, Russia
Samara National Research University, Russia


Paper #3042 received 2016.05.17; accepted for publication 2016.09.10; published online 2016.09.30.

DOI: 10.18287/JBPE16.02.030201

Abstract

This is the third part of the review-tutorial paper describing fundamentals of tissue optics and photonics. The first part of the paper was mostly devoted to description of tissue structures and their specificity related to interactions with light [1]. The second part presented light-tissue interactions originated from tissue dispersion, scattering, and absorption properties, including light reflection and refraction, absorption, elastic, and quasi-elastic scattering [2]. This last part of the paper, underlines mostly photothermal and nonlinear interactions such as  temperature rise and tissue damage, photoacoustic and acoustooptical, nonlinear sonoluminescence, Raman scattering, multiphoton autofluorescence, second harmonic generation (SHG), terahertz (THz) radiation interactions, and finally photochemical interactions with description of two widely spread therapeutic applications: photodynamic therapy (PDT) and low level light therapy (LLLT).

Keywords

tissue optics; photothermal effects; nonlinear interactions; temperature; tissue damage; photoacoustics; acoustooptics; sonoluminescence; Raman scattering; multiphoton autofluorescence, SHG; terahertz; photochemical processes; PDT; LLLT

Full Text:

PDF

References


1. V. V. Tuchin, “Tissue optics and photonics: Biological tissue structures,” J. of Biomedical Photonics & Eng. 1(1), 3–21 (2015). Crossref

2. V. V. Tuchin, “Tissue optics and photonics: Light-tissue interaction,” J. of Biomedical Photonics & Eng. 1(2), 98–135 (2015). Crossref

3. V. S. Letokhov, “Laser biology and medicine,” Nature 316 (6026) 325–328 (1985).

4. G. J. Müller, and D. H. Sliney (eds.), Dosimetry of Laser Radiation in Medicine and Biology, SPIE Inst. Adv. Opt. Techn. IS5, SPIE Press, Bellingham, WA (1989).

5. D. H. Sliney, and S. L. Trokel, Medical Lasers and their Safe Use, Academic Press, Inc., New York, et al. (1993). Crossref

6. A. Katzir, Lasers and Optical Fibers in Medicine, Academic Press, Inc., San Diego, et al. (1993). Crossref

7. V. V. Tuchin (ed.), Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy, MS102, SPIE Press, Bellingham, WA (1994).

8. G. Müller, and A. Roggan (eds.), Laser–Induced Interstitial Thermotherapy, SPIE Press Bellingham, WA (1995).

9. H.-P. Berlien, and G.J. Müller (eds.), Applied Laser Medicine, Springer-Verlag, Berlin (2003).

10. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, 3rd ed., Springer, Berlin, Heidelberg, New York (2007).

11. R. Splinter, and B.A. Hooper, An Introduction to Biomedical Optics, CRC Press, Taylor & Francis Group, NY, London (2007).

12. L. Pavesi, Ph. M. Fauchet (eds.), Biophotonics, Springer Verlag, Berlin, Heidelberg (2008).

13. E. D. Baron (ed.), Light-Based Therapies for Skin of Color, Springer, London (2009). Crossref

14. G. Ahluwalia (ed.), Light Based Systems for Cosmetic Application, William Andrew, Norwich (2009).

15. V. V. Tuchin, Lasers and Fibre Optics in Biomedical Science, 2nd ed., Fizmatlit, Moscow (2010).

16. F.S. Pavone (ed.), Laser Imaging and Manipulation in Cell Biology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).

17. L. A. Dombrovsky, and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach, Begell House, New York (2010).

18. A. J. Welch, and M. J. C. van Gemert (eds.), Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed., Springer Science+Business Media, Berlin, Heidelberg, New York (2011).

19. D. A. Boas, C. Pitris, and N. Ramanujam (eds.), Handbook of Biomedical Optics, CRC Press, Taylor & Francis Group, London (2011).

20. J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics, vol. 1: Basics and Techniques, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

21. J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics, vol. 2: Photonics for Health Care, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

22. J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Handbook of Biophotonics, vol. 3: Photonics in Pharmaceutics, Bioanalysis and Environmental Research, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

23. V. V. Tuchin, Dictionary of Biomedical Optics and Biophotonics, SPIE Press, Bellingham, WA (2012).

24. H. Jelinkova (ed.), Lasers for Medical Applications: Diagnostics, Therapy and Surgery, Woodhead Publishing, Ltd., Cambridge (2013).

25. R. Liang (ed.), Biomedical Optical Imaging Technologies. Design and Applications, Springer-Verlag, Berlin, Heidelberg (2013).

26. T. Vo-Dinh (ed.), Biomedical Photonics Handbook, vol. 1: Fundamentals, devices, and techniques, vol. 2: Biomedical diagnostics, vol. 3: Therapeutics and advanced biophotonics, 2nd ed., CRC Press, Boca Raton (2015).

27. F. S. Pavone, and P. J. Campagnola (eds.), Second Harmonic Generation Imaging, CRC Press, Taylor & Francis Group, Boca Raton, London, New York (2014).

28. K. Kulikov, Laser Interaction with Biological Material. Mathematical Modeling, Springer, Cham, Heidelberg, New York, Dordrecht, London (2014).

29. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed., PM 254, SPIE Press, Bellingham, WA (2015).

30. B. Querleux (ed.), Computational Biophysics of the Skin, CRC Press, Taylor & Francis Group, London (2015). Crossref

31. F. D. Dip, T. Ishizawa, N. Kokudo, and R. Rosenthal (eds.), Fluorescence Imaging for Surgeons: Concepts and Applications, Springer Science + Business Media, New York (2015).

32. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics. Vol. 1: Light–Tissue Interaction, 2nd ed., PM262, SPIE Press, Bellingham, WA (2016).

33. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics. Vol. 2: Methods, 2nd ed., PM263, SPIE Press, Bellingham, WA (2016).

34. I. J. Bigio, and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications, Cambridge University Press, Cambridge (2016).

35. C. H. G. Wright, S. F. Barrett, and A. J. Welch, “Laser-tissue interaction” in Lasers in Medicine, D. R. Vij and K. Mahesh (eds.), Kluwer Academic Publishers, Boston, Dordrecht, London, 21–58 (2002).

36. A. Vogel, and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003); Erratum, Chem. Rev. 103, 2079 (2003).

37. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015–1047 (2005).

38. S. L. Jacques, “Ratio of entropy to enthalpy in thermal transitions in biological tissues,” J. Biomed. Opt. 11(4), 041108 (2006).

39. J. A. Pearce, “Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay,” J. Biomech. Eng. 137(12), 121006 (2015).

40. I. A. Lubashevsky, A. V. Priezzhev, V. V. Gafiychuk, and M. G. Cadjan, “Local thermal coagulation due to laser-tissue interaction as irreversible phase transition,” J. Biomed. Opt. 2(1), 95–105 (1997).

41. Yu. N. Scherbakov, A. N. Yakunin, I. V. Yaroslavsky, and V. V. Tuchin, “Thermal process modeling during uncoagulating laser radiation interaction with multi-layer biotissue. 1. Theory and calculating models,” Opt. Spectroscopy 76(5), 754–758 (1994).

42. Yu. N. Scherbakov, A. N. Yakunin, I. V. Yaroslavsky, and V. V. Tuchin, “Thermal processmodeling during uncoagulating laser radiation interaction with multi-layer biotissue. 2. Numerical results,” Opt. Spectroscopy 76(5), 759–765 (1994).

43. V. V. Tuchin, Yu. N. Scherbakov, A. N. Yakunin, and I. V. Yaroslavsky, “Numerical technique for modeling of laser-induced hyperthermia,” in Laser-Induced Interstitial Thermotherapy, G. Müller, and A. Roggan (eds.), SPIE Press, Bellingham, Washington, 100–113 (1995).

44. I. V. Yaroslavsky, J. J. Childs, Jr., M. Z. Smirnov, A. V. Erofeev, and G. B. Altshuler, “Self-adaptation optical effects in photothermal treatment of skin structures,” IEEE J. Select. Tops Quant. Electr. 20(2), 7101109 (2014).

45. L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipinski, and V. Timchenko, “Simplified approaches to radiative transfer simulations in laser induced hyperthermia of superficial tumors,” Comput. Therm. Sci. 5(6), 521–530 (2013).

46. M. Jasiński , E. Majchrzak, and L. Turchan, “Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation,” Appl. Math. Model. 40(2), 750–762 (2016).

47. L. Lévesque, J.-M. Noël, and C. Scott, “Controlling the temperature of bones using pulsed CO2 lasers: observations and mathematical modeling,” Biomed. Opt. Express 6(12) 4768–4780 (2015). Crossref

48. A. Klinger, L. Krapf, R. Orzekowsky-Schroeder, N. Koop, A. Vogel, and G. Hüttmannb, “Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation,” J. Biomed. Opt. 20(11), 116001 (2015).

49. A. N. Yakunin, Y. A. Avetisyan, and V. V. Tuchin, “Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles,” J. Biomed. Opt., 20(5), 051030 (2015). Crossref

50. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy, Wiley, New York (1983).

51. A. V. Priezzhev, V. V. Tuchin, and L. P. Shubochkin, Laser Diagnostics in Biology and Medicine, Nauka, Moscow (1989).

52. V. P. Zharov, and V. S. Letokhov, Laser Opto-Acoustic Spectroscopy, Springer Verlag, New York (1989).

53. V. E. Gusev, and A. A. Karabutov, Laser Optoacoustics, AIP Press, New York (1993).

54. S. E. Braslavsky, and K. Heihoff, “Photothermal methods” in Handbook of Organic Photochemistry, J. C. Scaiano (ed.), CRC Press, Boca Raton (1989).

55. A. Mandelis, and P. Hess (eds.), Progress in Photothermal and Photoacoustic Science and Technology. Life and Earth Sciences, SPIE Press, Bellingham, WA (1997).

56. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: The revolution of photonic imaging,” Nature Biotechnol. 23(3), 313–320 (2005). Crossref

57. L. V. Wang, and H.-I. Wu, Biomedical Optics: Principles and Imaging, Wiley-Intersience, Hoboken, New Jersey (2007). Crossref

58. L. Wang (ed.), Photoacoustic Imaging and Spectroscopy, CRC Press, Taylor & Francis Group, London (2009).

59. R. Myllylä, Z. Zhao, and M. Kinnunen, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 419–455 (2009).

60. S. Hu, K. Maslov, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo volumetric microvascular imaging in intact tissues” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 361–375 (2010).

61. T. Khokhlova, I. Pelivanov, and A. Karabutov, “Advances in optoacoustic imaging,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 343–360 (2010).

62. V. Ntziachristos, and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).

63. V. V. Tuchin, E. I. Galanzha, and V. P. Zharov, “In vivo photothermal and photoacoustic flow cytometry,” in Advanced Optical Cytometry: Methods and Disease Diagnoses, V. V. Tuchin (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 501–571 (2011).

64. V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytometry A 79A(10), 737–745 (2011).

65. R. O. Esenaliev, “Biomedical optoacoustics,” J. Innov. Opt. Health Sci. 4(1), 39–44 (2011).

66. L. V. Wang, and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).

67. A. Taruttis, and V. Ntziachristos, “Optoacoustic molecular imaging: Methods and applications,” in Advanced Biophotonics: Tissue Optical Sectioning, R. K. Wang, and V. V. Tuchin (eds.), CRC Press, Taylor & Francis Group, London, 449–474 (2013).

68. V. V. Tuchin, “In vivo optical flow cytometry and cell imaging,” Rivista Del Nuovo Cimento, 37(7), 375–416 (2014).

69. B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).

70. R. J. Jeon, A. Mandelis, V. Sanchez, and S. H. Abrams, “Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth,” J. Biomed. Opt. 9(4), 804–819 (2004).

71. J. A. Garcia, A. Mandelis, S. H. Abrams, and A. Matvienko, “Photothermal radiometry and modulated luminescence: Applications for dental caries detection” in Handbook of Biophotonics 2: Photonics for Health Care, J. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann (eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1047–1052 (2012).

72. V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “Integrated photothermal flow cytometry in vivo,” J. Biomed. Opt. 10, 051502-1–13 (2005).

73. V. P. Zharov, E. I. Galanzha, and V. V. Tuchin, “Photothermal image flow cytometry in vivo,” Opt. Lett. 30(6), 628–630 (2005).

74. D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014). Crossref

75. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).

76. A. A. Karabutov, and A.A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin (ed.), SPIE Press, Bellingham, Washington, 585–674 (2002).

77. A. A. Oraevsky, and A. A. Karabutov, “Optoacoustic tomography” in Biomedical Photonics Handbook, T. Vo-Dinh (ed.), CRC Press, Boca Raton, 34-1–34 (2003).

78. I. M. Pelivanov, A. A. Karabutov, T. D. Khokhlova, and A. A. Oraevsky, “Measurement of optical fluence distribution and optical properties of tissues using time-resolved profiles of optoacoustic pressure” in Handbook of Optical Biomedical Diagnostics. Vol. 1: Light–Tissue Interaction, V. V. Tuchin (ed.), 2nd ed., PM262, SPIE Press, Bellingham, WA (2016).

79. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).

80. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).

81. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14(5), 1151–1158 (1997).

82. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytical mode,” Phys. Rev. Lett. 87, 043903 (2001).

83. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006).

84. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and random media,” Rep. Prog. Phys. 60, 227–292 (1997).

85. A. Kishen, and A. Asundi (eds.), Photonics in Dentistry. Series of Biomaterials and Bioengineering, Imperial College Press, London (2006).

86. D. L. Andrews (ed.), Encyclopedia of Applied Spectroscopy, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009).

87. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, P. Välisuo, ”A review of indocyanine green fluorescent imaging in surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012). Crossref

88. J. T. Alander, O. M. Villet, T. Pätilä, I. S. Kaartinen, M. Lehecka, T. Nakaguchi, T. Suzuki, and V. Tuchin, “Review of indocyanine green imaging in surgery” in Fluorescence Imaging for Surgeons: Concepts and Applications, F. D. Dip, T. Ishizawa, N. Kokudo, R. Rosenthal (eds.), Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London, 35–53 (2015).

89. A. Mazhar, D. Cuccia, S. Gioux, A. Durkin, J. Frangioni, and B. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15(1), 010506 (2010).

90. R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).

91. Yu. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo” in Handbook of Optical Biomedical Diagnostics. Vol. 2: Methods, V. V. Tuchin (ed.), 2nd ed., PM263, SPIE Press, Bellingham, WA, 99–190 (2016).

92. H. Schneckenburger, W. S. L. Strauss, K. Stock, and R. Steiner, “Fluorescence technologies in biomedical diagnostics” in Handbook of Optical Biomedical Diagnostics. Vol. 2: Methods, V. V. Tuchin (ed.), 2nd ed., PM263, SPIE Press, Bellingham, WA, 241–304 (2016).

93. A. N. Yaroslavsky, E. V. Salomatina, V. Neel, R. Anderson, and T. Flotte, “Fluorescence polarization of tetracycline derivatives as a technique for mapping nonmelanoma skin cancers,” J. Biomed. Opt. 12(1), 014005 (2007).

94. A. N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, and V. Neel, “High-contrast mapping of basal cell carcinomas,” Opt. Lett. 37(4), 644–646 (2012).

95. J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21(13), 15475–15489 (2013). Crossref

96. J. Jagtap, S. Chandel, N. Das, J. Soni, S. Chatterjee, A. Pradhan, and N. Ghosh, “Quantitative Mueller matrix fluorescence spectroscopy for precancer detection,” Opt. Lett. 39(2), 243–246 (2014).

97. V. V. Tuchin, “Polarized light interaction with tissues: a tutorial,” J. Biomed. Opt. 21(7), 071114 (2016).

98. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1(3), 296–304 (1996).

99. A. Diaspro (ed.), Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, Wiley-Liss, New York (2002).

100. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the bioscience,” Nature Biotechnol. 21, 1369–1377 (2003).

101. B. R. Masters, and P. T. C. So (eds.), Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, New York (2008).

102. M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, Femtosecond Biophotonics. Core Technology and Applications, Cambridge University Press, New York (2010).

103. K. König, and A. Uchugonova, “Multiphoton imaging and nanoprocessing of human stem cells” in Laser Imaging and Manipulation in Cell Biology, F. S. Pavone (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 7–34 (2010).

104. Q. Shen, and L. V. Wang, “Two-dimensional imaging of dense tissue simulating turbid media by use of sonoluminescence,” Appl. Opt. 38(1), 246–252 (1999). Crossref

105. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001). Crossref

106. A. T. Tu, Raman Spectroscopy in Biology, John Wiley & Sons Ltd., New York (1982).

107. A. Mahadevan–Jansen, and R. Richards-Kortum, “Raman spectroscopy for detection of cancers and precancers,” J. Biomed. Opt. 1(1), 31–70 (1996).

108. G. J. Puppels, “Confocal Raman Microspectroscopy” in Fluorescent and Luminescent Probes for Biological Activity, W. Mason (ed.), Academic Press, London., 377–406 (1999).

109. J. M. Chalmers, and P. R. Grifiths (eds.), Handbook of Vibrational Spectroscopy, John Wiley & Sons, Chichester (2002).

110. J. Popp, and M. Strehle (eds.), Biophotonics: Visions for Better Health Care, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).

111. S. Rehman, I. ur Rehman, and Z. Movasaghi, Vibrational Spectroscopy for Tissue Analysis, CRC Press, Taylor & Francis Group, Boca Raton, FL (2013).

112. Y. Ozaki, A. Ikehata, and H. Shinzawa, ”Near-Infrared Spectroscopy in Biological Molecules and Tissues” in Encyclopedia of Biophysics, G. C. K. Roberts (ed.), Springer-Verlag, Berlin, Heidelberg, 1695–1706 (2013).

113. Y. Kitahama, T. Itoh, P. Pienpinijtham, S. Ekgasit, X. X. Han, and Y. Ozaki, “Biological applications of SERS using functional nanoparticles,” ACS Symp Ser (Am. Chem. Soc.), 1113, 181–234 (2012).

114. G. W. Lucassen, P. J. Caspers, G. J. Puppels, M. E. Darvin, and J. Lademann, “Infrared and Raman spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics. Vol. 2: Methods, V. V. Tuchin (ed.), 2nd ed., PM263, SPIE Press, Bellingham, WA, 191–210 (2016).

115. U. Utzinger, D. L. Heintselman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955–959 (2001).

116. R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy—A prospective tool in the life sciences,” Chemphyschem. 4, 14–30 (2003).

117. C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).

118. M. M. Nazarov, A. P. Shkurinov, V. V. Tuchin, and X.-C. Zhang, “Terahertz tissue spectroscopy and imaging” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 591–617 (2010).

119. X.-C. Zhang, and J. Xu, Introduction to THz Wave Photonics, Springer, New York (2010). Crossref

120. A. A. Angeluts, A. V. Balakin, M. G. Evdokimov, M. N. Esaulkov, M. M. Nazarov, I. A. Ozheredov, D. A. Sapozhnikov, P. M. Solyankin, O. P. Cherkasova, and A. P. Shkurinov, “Characteristic responses of biological and nanoscale systems in the terahertz frequency range,” Quant. Electron., 44(7) 614–632 (2014). Crossref

121. G. J. Wilmink, and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Milli. Terahz Waves 32, 1074–1122 (2011). Crossref

122. C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions. Optical and Terahertz skin cancers imaging,” J. Biophoton. 7, 295–303 (2014).

123. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quant. Electr. 38(7) 647–654 (2008).

124. A. S. Kolesnikov, E. A. Kolesnikova, K. N. Kolesnikova, D. K. Tuchina, A. P. Popov, A. A. Skaptsov, M. M. Nazarov, A. P. Shkurinov, A. G. Terentyuk, and V. V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014). Crossref

125. T. I. Karu, Photobiology of Low–Power Laser Therapy, Harwood Academic Publ., Chur et al. (1989).

126. T. I. Karu, “Mitochondrial signaling in mammalian cells activated by red and near-IR radiation,” Photochem. Photobiol. 84, 1091–1099 (2008).

127. B. W. Henderson, and T.J. Dougherty (eds.), Photodynamic Therapy: Basic Principles and Clinical Applications, Marcel-Dekker, New York (1992).

128. W. L. Morison, Phototherapy and Photochemotherapy of Skin Disease, 3rd ed., Taylor and Francis, New York (2005). Crossref

129. M. Hamblin, and P. Mroz (eds.), Advances in Photodynamic Therapy: Basic, Translational and Clinical, Artec House, Boston, London (2008).

130. B. C. Wilson, “Photodynamic therapy/diagnostics: Principles, practice and advances” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 649–686 (2010).

131. M. L. T. Elsaie, Photodynamic Therapy. New Research, Nova Science Publishers, Inc., New York (2013).

132. M. H. Abdel-Kader (ed.), Photodynamic Therapy. From Theory to Application, Springer-Verlag, Berlin, Heidelberg (2014).

133. Y.-Y. Huang, A. C.-H. Chen, and M. R. Hamblin, “Advances in low-intensity laser and phototherapy” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 687–716 (2010).

134. Y.-Y. Huang, M. R. Hamblin, and L. De Taboada, “Low-level laser therapy in stroke and central nervous system” in Handbook of Photonics for Biomedical Science, V. V. Tuchin (ed.), CRC Press, Taylor & Francis Group, London, 717–737 (2010).

135. S. Kim, S. Shin, and S. Jeong, “Effects of tissue water content on the propagation of laser light during low-level laser therapy,” J. Biomed. Opt. 20(5), 051027 (2015).

136. P. J. Verveer (ed.), Advanced Fluorescence Microscopy Methods and Protocols, Humana Press, Springer Science+Business Media, New York (2015).

137. G. Olivi, R. De Moor, and E. DiVito (eds.), Lasers in Endodontics. Scientific Background and Clinical Applications, Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London (2016).

138. A. Kyagova, A. Potapenko, M. Möller, H. Stopper, and W. Adam, “Photohemolysis sensitized by the Furocoumarin derivative Alloimperatorin and its hydroperoxide photooxidation product,” Photochem. Photobiol. 90, 162–170 (2014).

139. A. A. Krasnovsky Jr., “Singlet oxygen and primary mechanisms of photodynamic therapy and photodynamic diseases” in Photodynamic therapy at the cellular level, A. B. Uzdensky (ed.), Research Signpost, Trivandrum-695 023, Kerala, India, 17-62 (2007).

140. A. A. Krasnovsky Jr., A. S. Kozlov, Y. V. Roumbal, “Photochemical investigation of the IR absorption bands of molecular oxygen in organic and aqueous environment,” Photochem. Photobiol. Sci. 11, 988–997 (2012).

141. S. G. Sokolovski, S. A. Zolotovskaya, A. Goltsov, C. Pourreyron, A. P. South, and E. U. Rafailov, “Infrared laser pulse triggers increased singlet oxygen production in tumour cells,” Sci. Rep. 3, 3484 (2013). Crossref

142. P. Woodgate, and L. A. Jardine, “Neonatal jaundice: phototherapy,” BMJ Clin. Evid. 2015, 0319 (2015).

143. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy,” Quant. Electr. 44 (7) 689–695 (2014).

144. G. Terentyuk, E. Panfilova, V. Khanadeev, D. Chumakov, E. Genina, A. Bashkatov, V. Tuchin, A. Bucharskaya, G. Maslyakova, N. Khlebtsov, and B. Khlebtsov, “Gold nanorods with hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo,” Nano Research. 7(3), 325–337 (2014). Crossref

145. B. N. Khlebtsov, E. S. Tuchina, V. A. Khanadeev, E. V. Panfilova, P. O. Petrov, V. V. Tuchin, and N. G. Khlebtsov, “Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin,” J. Biophoton. 6(4), 338–351 (2013).

146. E. S. Tuchina, V. V. Tuchin, B. N. Khlebtsov, and N. G. Khlebtsov, “Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation,” Quant. Electr. 41(4) 354–359 (2011).

147. I. Yu. Yanina, V. A. Bochko, J. T. Alander, and V. V. Tuchin, “Optical image analysis of fat cells for indocyanine green mediated near-infrared laser treatment,” Laser Phys. Let. 8(9), 684–690 (2011).

148. I. Yu. Yanina, V. V. Tuchin, N. A. Navolokin, O. V. Matveeva, A. B. Bucharskaya, G. N. Maslyakova, and G. B. Altshuler, “Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo,” J. Biomed. Opt. 17 (5), 058002 (2012).

149. I. Yu. Yanina, N. A. Trunina, and V. V. Tuchin, “Optical coherence tomography of adipose tissue at photodynamic/photothermal treatment in vitro,” J. Innovative Opt. Health Sci. 6 (2) 1350010 (2013).

150. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Effect of ethanol on the transport of methylene blue through stratum corneum,” Med. Laser Appl. 23, 31–38 (2008). Crossref

151. Yu. A. Vladimirov and A. Ya. Potapenko, Physico-Chemical Basis of Photobiological Processes, the textbook for high schools, 2nd ed., Moscow, Drofa (2006).

152. A. A. Potapov, S. A. Goryaynov, V. A. Okhlopkov, L. V. Shishkina, V. B. Loschenov, T. A. Savelieva, D. A. Golbin, A. P. Chumakova, M. F. Goldberg, M. D. Varyukhina, and A. Spallone, “Laser biospectroscopy and 5-ALA fluorescence navigation as a helpful tool in the meningioma resection,” Neurosurg. Rev. 39(3), 437–447 (2016).

153. B. Khlebtsov, E. Tuchina, V. Tuchin, and N. Khlebtsov, “Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus,” RSC Advances 5, 61639–61649 (2015). Crossref

154. A. V. Priezzhev, H. Schneckenburger, and V. V. Tuchin, “Special Section Guest Editorial: Laser Applications in Life Sciences,” J. Biomed. Opt. 20 (5), 051001 (2015).

155. ANSI Z136.3-2005, ANSI, American National Standard for the Safe Use of Lasers in Health Care Facilities, Laser Institute of America, Orlando, FL (2005).

156. ANSI Z136.1-2007, ANSI, American National Standard for the Safe Use of Lasers, Laser Institute of America, Orlando, FL (2007).

157. E. A. Genina, V. A. Titorenko, A. V. Belikov, A. N. Bashkatov, and V. V. Tuchin, “Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing,” J. Biomed. Opt. 20(12) 128004 (2015).

158. T. I. Karu, L. V. Pyatibrat, and N. I. Afanasyeva, “Cellular effects of low power laser therapy can be mediated by nitric oxide,” Lasers Surg. Med. 36, 307–314 (2005). Crossref

159. E. Tuchina, and V. Tuchin, “Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis,” Proc. SPIE 7165, 71650I (2009).

160. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, NY (2011).

161. V. V. Tuchin (ed.), Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, Berlin, Heidelberg, N. Y., Springer-Verlag, 2nd ed., 2 vols. (2013).

162. W. Drexler, and J. G. Fujimoto (eds.), Optical Coherence Tomography: Technology and Applications, 2nd ed., Springer Reference, Science + Business Media, New York (2015).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+