Optical clearing of human dura mater by glucose solutions

Elina A. Genina (Login required)
Saratov National Research State University, Russia
National Research Tomsk State University, Russia

Alexey N. Bashkatov
Saratov National Research State University, Russia
National Research Tomsk State University, Russia

Valery V. Tuchin
Saratov National Research State University, Russia
Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Samara National Research University, Russia


Paper #3177 received 9 Apr 2016; accepted for publication 20 Apr 2017; published online 30 Apr 2017.

DOI: 10.18287/JBPE17.03.010309

Abstract

Significant light scattering by dura mater in the visible spectral range seriously restricts the application of noninvasive optical methods to the diagnostics and therapy of brain diseases. We present the results of the study of human dura mater optical clearing in vitro by the glucose solutions with the concentrations 1.5М and 3М in the spectral range 400-700 nm. The efficiency of the tissue optical clearing is assessed. Basing on the analysis of the kinetics of collimated transmittance of light by samples of dura mater, the relative glucose diffusion coefficients are calculated that amount to (1.1±0.1)´10-6 cm2/s and (2.0±0.2)´10-6 cm2/s, respectively.

Keywords

Optical immersion clearing; Dura mater; Collimated transmittance; Diffusion coefficient

Full Text:

PDF

References


1. H. Ellis, “Anatomy of head injury,” Surgery (Oxford) 22(3), 49-51 (2004).

2. V. I. Zyablov, Yu. N. Shapovalov, K. D. Toskin, V. V. Tkach, V. V. Zherebovskiy, and L. S. Georgievskaya, “The structure, physical, and mechanical properties of human dura mater in the age aspect,” Archive of anatomy, histology and embryology 3, 29-36 (1982) [in Russian].

3. M. A. Baron, and N. A. Mayorova, Functional stereomorphology of brain membranes, Atlas, Medicine, Moscow (1982) [in Russian].

4. J. Spacek, Atlas of ultrastructural neurocytology.

5. L. P. Gartner, and J. L. Hiatt, Color textbook of histology 3rd ed., Saunders, Philadelphia (2007). ISBN 1416029451

6. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Chapter 5 in: Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam (eds.), Taylor & Francis Group, LLC, CRC Press Inc., 67-100 (2011).

7. D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

8. J. W. Barker, A. Panigrahy, and T. J. Huppert, “Accuracy of oxygen saturation and total hemoglobin estimates in the neonatal brain using the semi-infinite slab model for FD-NIRS data analysis,” Biomedical Optics Express 5(12), 4300-4312 (2014). Crossref

9. D. Arifler, T. Zhu, S. Madaan, and I. Tachtsidis, “Optimal wavelength combinations for near-infrared spectroscopic monitoring of changes in brain tissue hemoglobin and cytochrome c oxidase concentrations,” Biomedical Optics Express 6(3), 933-947 (2015). Crossref

10. E. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, “Optical clearing of human dura mater,” Optics and Spectroscopy 98(3), 515-521 (2005). Crossref

11. E. C. Cheshire, R. D. G. Malcomson, S. Joseph, M. J. B. Biggs, D. Adlam, and G. N. Rutty, “Optical clearing of the dura mater using glycerol: a reversible process to aid the post-mortem investigation of infant head injury,” Forensic Science, Medicine, and Pathology 11(3), 395-404 (2015). Crossref

12. E. Angell-Petersen, H. Hirschberg, and S. J. Madsen, “Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy,” J. Biomed. Opt. 12(1), 014003 (2007).

13. F. Wang, H. He, H. Zhuang, X. Xie, Z. Yang, Z. Cai, H. Gu, and J. Zhou, “Controlled light field concentration through turbid biological membrane for phototherapy,” Biomedical Optics Express 6(6), 2237-2245 (2015). Crossref

14. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics and phototherapy,” Chapter 10 in: Handbook on Optical Biomedical Diagnostics, Vol. 2: Methods, 2nd ed., V. V. Tuchin (ed.), SPIE Press, Bellingham, Washington, 565-937 (2016).

15. Glucose - instruction, application reviews. Health & Medicine, May 2016.

16. M. G. Ghosn, E. F. Carbajal, N. A. Befrui, V. V. Tuchin, and K. V. Larin, “Concentration effect on the diffusion of glucose in ocular tissues,” Optics in Lasers in Engineering 46(12), 911-914 (2008).

17. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, “Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin,” J. Biophotonics 8(4), 332-346 (2015). Crossref

18. W. Feng, R. Shi, N. Ma, D. K. Tuchina, V. V. Tuchin, and D. Zhu, “Skin optical clearing potential of disaccharides,” J. Biomed. Opt. 21(8), 081207 (2016). Crossref

19. Y. Huang, and K. M. Meek, “Swelling studies on the cornea and sclera: The effects of pH and ionic strength,” Biophysical Journal 77(3), 1655-1665 (1999). Crossref

20. M. I. Ravich-Szherbo, and V. V. Novikov, Physical and colloid chemistry, Vysshaya Shkola, Moscow (1975) [in Russian].

21. E. M. Culav, C. H. Clark, and M. J. Merrilees, “Connective tissue: matrix composition and its relevance to physical therapy,” Physical Therapy 79, 308-319 (1999).

22. A. E. Chalykh, Diffusion in polymer systems, Chemistry, Moscow (1987) [in Russian].

23. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and mannitol diffusion in human dura mater,” Biophysical Journal 85(5), 3310-3318 (2003). Crossref

24. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Measurement of glucose diffusion coefficients in human tissues,” Chapter 19 in: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin (ed.), Taylor & Francis Group LLC, CRC Press 587-621 (2009).

25. L. A. Alves, J. B. A. Silva, and M. Giulietti, “Solubility of D-glucose in water and ethanol/water mixtures,” J. Chem. Eng. Data 52(6), 2166-2170 (2007). Crossref

26. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19(24), 2062-2064 (1994).

27. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788-2797 (1998). Crossref

28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, John Willey & Sons Inc., New York (1983). ISBN 9783527618156. Crossref

29. J. L. Cox, R. A. Farrell, R. W. Hart, and M. E. Langham, “The transparency of the mammalian cornea,” The Journal of Physiology 210(3), 601-616 (1970). Crossref

30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: The art of scientific computing, Cambridge University Press, Cambridge, New York (1992). ISBN 0521431085

31. A. Katchalsky, “Polyelectrolyte gels,” Prog. Biophys. Chem. 4, 1-59 (1954).

32. A. Pitie, “The action of mustard gas on ox cornea collagen,” Biochem. J. 41(2), 185-190 (1947). Crossref

33. A. Pirie, and R. Van Heyningen, Biochemistry of the Eye, Blackwell Scientific Publications, Oxford (1956). ISBN 19571401339.

34. S. E. Avetisov, V. R.Mamikonian, and I. A. Novikov, “The role of tear pH values and Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus,” Vestnik Oftal’mologii 127(2), 3-8 (2011).

35. Anatomy and physiology of the gastrointestinal tract (Handbook). Acidity (pH). [in Russian].

36. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers Surg. Med. 36(2), 72–75 (2005). Crossref

37. I. M. Berke, J. P. Miola, M. A. David, M. K. Smith, and C. Price, “Seeing through musculoskeletal tissues: improving in situ imaging of bone and the lacunar canalicular system through optical clearing,” PLoS ONE 11(3), e0150268 (2016).

38. Z. Mao, D. Zhu, Y. Hu, X. Wen, and Z. Han, “Influence of alcohols on the optical clearing effect of skin in vitro,” J. Biomed. Opt. 13(2), 021104 (2008).

39. J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Selected Topics in Quantum Electronics 20(2), 7101007 (2014).

40. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubei, N. A. Lakodina, and V. V. Tuchin, “Estimation of the glucose diffusion coefficient in human eye sclera,” Biophysics 48(2), 292-296 (2003).

41. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of the eye sclera in vivo caused by glucose,” Quant. Electr. 36(12), 1119-1124 (2006).

42. E. Khalil, K. Kretsos, and G. B. Kasting, “Glucose partition coefficient and diffusivity in the lower skin layers,” Pharm. Res. 23(6), 1227-1234 (2006).

43. V. V. Tuchin, A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and N. A. Lakodina, “In vivo investigation of the immersion-liquid-induced human skin clearing dynamics,” Techn. Phys. Lett. 27(6), 489-490 (2001).

44. H. Cheng, Q. Luo, S. Zeng, S. Chen, W. Luo, and H. Gong, “Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43(31), 5772-5777 (2004). Crossref

45. E. I. Galanzha, V. V. Tuchin, A. V. Solovieva, T. V. Stepanova, Q. Luo, and H. Cheng, “Skin backreflectance and microvascular system functioning at the action of osmotic agents,” J. Phys. D: Appl. Phys. 36(14), 1739-1746 (2003).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+