Refractive Index Anisotropy and Diffusion Rate in Cartilage Tissue

Georgy V. Simonenko (Login required)
N. G. Chernyshevsky Saratov National Research State University, Russia

Paper #3224 received 21 Jun 2017; revised manuscript received 4 Sep 2017; accepted for publication 4 Sep 2017; published online 25 Sep 2017.

DOI: 10.18287/JBPE17.03.030302


The paper presents the results of experimental and theoretical studies of cartilage tissue optical characteristics after the immersion impact and without it. We have found that the immersion effect leads to structural changes in the cartilage tissue, in particular, to the increased size of the scattering elements. The refractive index anisotropy of the cartilage tissue is measured in the samples subjected to immersion impact and without it. We demonstrate theoretically that the diffusion kinetics of the immersion fluid in the biotissue strongly depends upon the anisotropy of the diffusion rate along the collagen fibres and in the perpendicular direction. Due to the diffusion anisotropy, the increase of the mean rate of the immersion fluid diffusion in the biotissue can lead to the fall of light transmission through the sample rather than to its expected increase.


optical properties; cartilage tissue; diffusion; immersion clearing

Full Text:



1. V. V. Tuchin, “Tissue optics and photonics: light-tissue interaction,” Journal of Biomedical Photonics & Engineering 1(2), 98-134 (2015). Crossref

2. A. Bykov, T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M. T. Nieminen, V. Tuchin, and I. Meglinski, “Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage,” Journal of Biophotonics 9(3), 270-275 (2016). Crossref

3. V. V. Tuchin (Ed.), Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, vol. 2, 2nd edition, Springer-Verlag, NY (2013).

4. S. M. Daly, and M. J. Leahy, “Go with the flow: a review of methods and advancements in blood flow imaging,” Journal of Biophotonics 6(3), 217-255 (2013). Crossref

5. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Non-destructive quantification of analytes diffusion in cornea and sclera by using optical coherence tomography,” Investigative Opthalmology & Visual Science 48(6), 2726-2733 (2007). Crossref

6. E. A. Genina, A. N. Bashkatov, E. A. Kolesnikova, M. V. Basko, G. S. Terentyuk, and V. V. Tuchin, “Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo,” Journal of Biomedical Optics 19(2), 021109 (2013). Crossref

7. V. V. Tuchin, “Polarized light interaction with tissues,” Journal of Biomedical Optics 21(7), 071114 (2016). Crossref

8. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing”, Laser & Photonics Reviews 7(5), 732-757 (2013). Crossref

9. J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Physics Letters 9(6), 469-473 (2012). Crossref

10. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy,” Journal of Biomedical Photonics & Engineering 1(1), 22-58 (2015). Crossref

11. E. A. Genina, A. N. Bashkatov, M. D. Kozintseva, and V. V. Tuchin, “OCT study of optical clearing of muscle tissue in vitro with 40% glucose solution,” Optics and Spectroscopy 120(1), 20-27 (2016). Crossref

12. C.-H. Liu, M. Singh, J. Li, Z. Han, C. Wu, S. Wang, R. Idugboe, R. Raghunathan, E. N. Sobol, V. V. Tuchin, M. Twa, and K. V. Larin, “Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography,” Modern Technologies in Medicine 7(1), 44-51 (2015).

13. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Review of Medical Devices 7(6), 825-842 (2010). Crossref

14. K. V. Larin, M. G. Goshn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE Journal of Selected Topics in Quantum Electronics 18(3), 1244-1259 (2012). Crossref

15. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Optics Letters 31(15), 2314-2316 (2006). Crossref

16. O. I. Baum, A. I. Omel'chenko, I. O. Ryzhkov, M. V. Obrezkova, V. V. Lunin, and E. N. Sobol', “Effect of Omnipaque on the optical properties and laser-induced changes in the thermostability of nucleus pulposus of the intervertebral disk,” Doklady Biochemistry and Biophysics 428, 261-263 (2009).

17. V. L. Vesnin, and V. G. Muradov “Spectrophotometric complex based on the monochromator MDR-41 for studying the absorption spectra in the range 400–1800 nm,” Izvestiya Samarskogo nauchnogo tsentra Rossiiskoy Akademii Nauk 10(3), 724-731 (2008) [in Russian].

18. D. B. Judd, and G. Wyszecki, Color in Business, Science and Industry, 2nd ed., John Wily & Sons, NY (1975).

19. G. V. Simonenko, V. V. Tuchin, and N. A. Lakodina, “Measurement of the optical anisotropy of biological tissues with the use of a nematic liquid crystal cell,” Journal of Optical Technology 67(6), 559-561 (2000). Crossref

20. V. Chigrinov, H. S. Kwok, D. Yakovlev, G. Simonenko, and V. Tsoi, “LCD optimization and modeling,” Journal of the Society for Information Display 12(2), 183-187 (2004). Crossref

21. E. S. Bukareva, G. V. Simonenko, and V. V. Tuchin, “Features of the kinetics of the immersion clarification of biological tissue,” Journal of Optical Technology 80(2), 119-123 (2013). Crossref

22. G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill. Book Co., New York (1968).

23. Yu. Ya. Kuzyakiv, K. A. Semenenko, and N. B. Zorov, Methods of Spectral Analysis, Izd-vo MGU, Moscow (1990) [in Russian].

24. D. A. Zimnyakov, G. V. Simonenko, and V. V. Tuchin, “Dispersion dependence of the optical anisotropy and the degree of depolarization of fibrous tissues,” Journal of Optical Technology 77(9), 577-581 (2010). Crossref

25. K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. Yu. Stepanovich, O. N. Grechukhina, and V. V. Tuchin, “Studying the mechanism of tissue optical clearing using the method of molecular dynamics,” Proc. SPIE 10336, 103360J (2017). Crossref

26. A. N. Bashkatov, E. A. Genina, T. G. Kamenskikh, et al., “Study of mildronate diffusion in th human eye sclera,” Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika 16(3), 167-177 (2016) [in Russian].

27. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes, Khimiya, Moscow (1986) [in Russian].

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+