Chloroform infiltrate temperature sensor using asymmetric circular dual-core photonic crystal fiber
Paper #3294 received 11 Jun 2018; revised manuscript received 11 Sep 2018; accepted for publication 14 Sep 2018; published online 30 Sep 2018.
DOI: 10.18287/JBPE18.04.030302
Abstract
A new temperature sensor based on asymmetry in dual circular core photonic crystal fiber (ADCPCF) is proposed where both the cores infiltrate by chloroform. To analyze the temperature dependent propagation characteristics, the thermo-optic coefficient of chloroform and silica is used. The asymmetry of the dual-core is confirmed by using the core radius of 1.615 and 1.45 µm, respectively. In the proposed design, the essential optical properties such as effective refractive index difference (birefringence), coupling length, and transmission spectra are determined by employing the finite element method (FEM) with the perfectly matched layer (PML). The effective refractive index of the chloroform varies with temperature within a certain range. Moreover, with the increase of every 1 °C temperature the effective index difference enhances to almost 4%. Also, with the reduction of every 100 nm wavelength the birefringence decrease to 0.125×10-3 and 0.092×10-3 for 35 and 30 °C temperature, respectively. The Numeric analysis shows the maximum sensitivity of 49.80 nm/°C at 1.61 mm fiber length for 2.9 µm lattice pitch with 2.25 µm air-hole diameter. Furthermore, every 1 °C temperature increment, the proposed ADCPCF exhibits approximately 16% increases of sensitivity than the existing result. In addition, the proposed ADCPCF reveals that the guiding properties like coupling length, birefringence, and transmission spectra are wavelength and temperature reliance.
Keywords
Full Text:
PDFReferences
1. N. Ayyanar, R. V. J. Raja, D. Vigneswaran, B. Lakshmi, M. Sumathi, and K. Porsezian, “Highly efficient compact temperature sensor using liquid infiltrated asymmetric dual elliptical core photonic crystal fiber,” Optical Materials 64, 574-582 (2017). Crossref
2. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847-851 (2003). Crossref
3. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology 5(3), 305-330 (1999). Crossref
4. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Optics Express 9(13), 698-713 (2001). Crossref
5. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Optics Express 20(6), 5974-5986 (2012). Crossref
6. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Optics Express 12(24), 5857-5871 (2004). Crossref
7. Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics Journal 6(3), 1-7 (2014). Crossref
8. Z. Liu, C. Wu, M.-L. V. Tse, C. Lu, and H.-Y. Tam, “Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination,” Optics Letters 38(9), 1385-1387 (2013). Crossref
9. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Optics Express 18(1), 141-149 (2010). Crossref
10. J. Xie, B. Xu, Y. Li, J. Kang, C. Shen, J. Wang, Y. Jin, H. Liu, K. Ni, X. Dong, C. Zhao, and S. Jin, “High-sensitivity temperature sensor based on a droplet-like fiber circle,” Applied Optics 53(18), 4085-4088 (2014). Crossref
11. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Optics Express 18(15), 15383-15388 (2010). Crossref
12. J.-M. Hsu, C.-L. Lee, P.-J. Huang, C.-H. Hung, and P.-Y. Tai, “Temperature sensor with enhanced sensitivity based on photonic crystal fiber interferometer with material overlay,” IEEE Photonics Technology Letters 24(19), 1761-1764 (2012). Crossref
13. S.-J. Qiu, Y. Chen, F. Xu, and Y.-Q. Lu, “Temperature sensor based on an isopropanol sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Optics Letters 37(5), 863-865 (2012). Crossref
14. X. Yang, Y. Lu, B. Liu, and J. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photonics Journal 8(3), 1-9 (2016).
15. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Optics Letters, 36(9), 1548-1550 (2011). Crossref
16. Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics Journal 7(2), 1-9 (2015). Crossref
17. W. Lin, B. Song, Y. Miao, H. Zhang, D. Yan, B. Liu, and Y. Liu, “Liquid-filled photonic-crystalfiber-based multimodal interferometer for simultaneous measurement of temperature and force,” Applied Optics, 54(6), 1309-1313 (2015). Crossref
18. K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sensors Journal 15(7), 3998-4003 (2015). Crossref
19. Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technology Letters 23(20), 1520-1522 (2011). Crossref
20. Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics Journal 4(5), 1801-1808 (2012). Crossref
21. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 µm range,” Optics Express 23(7), 8281-8289 (2015). Crossref
22. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” Journal of Optics A: Pure and Applied Optics 7(8), L13-L20, 2005. Crossref
23. C. J. de Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. B. Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Optics Express 15(18), 11207- 11212 (2007). Crossref
24. R. V. J. Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE Journal of Quantum Electronics 46(12), 1795-1803 (2010). Crossref
25. Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Applied Physics Express 8(4), 046701 (2015). Crossref
© 2014-2025 Authors
Public Media Certificate (RUS). 12+