Numerical Modeling of Radiation Focusing by Dielectric Microcylinders with Several Layers
DOI: 10.18287/JBPE21.07.030304
Abstract
Keywords
Full Text:
PDFReferences
1. S. Zhou, “Effects of light polarization in photonic nanojet,” Optical and Quantum Electronics 51, 112 (2019).
2. V. V. Kotlyar, S. S. Stafeev, and A. A. Kovalev, “Sharp focusing of a light field with polarization and phase singularities of an arbitrary order,” Computer Optics 43(3), 337–346 (2019).
3. A. Darafsheh, “Photonic nanojets and their applications,” Journal of Physics: Photonics 3(2), 022001 (2021).
4. J. Zhu, L. L. Goddard, “All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets,” Nanoscale Advances 1, 4615–4643 (2019).
5. I. V. Minin, C.-Y. Liu, Y. E. Geints, and O. V. Minin, “Recent Advances in Integrated Photonic Jet-Based Photonics,” Photonics 7(2), 41 (2020).
6. X. Chen, M. E. Kandel, and G. Popescu, “Spatial light interference microscopy: principle and applications to biomedicine,” Advances in Optics and Photonics 13(2), 353–425 (2021).
7. S. Gao, K. Meng, Z. Yang, H. Liu, F. Wang, L. Sun, and T. Chen, “The Probe-combined Microspheres Applied in Biomedical Field for Super-resolution Imagings and Micromanipulations,” In 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 155–158 (2019).
8. A. Shakhov, A. Astafiev, and V. Nadtochenko, “Microparticle manipulation using femtosecond photonic nanojet-assisted laser cavitation,” Optics Letters 43(8), 1858 (2018).
9. S. Surdo, M. Duocastella, and A. Diaspro, “Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research,” Micromachines 12(3), 256 (2021).
10. D. Lu, M. Pedroni, L. Labrador-Paez, M. I. Marques, D. Jaque, and P. Haro-Gonzalez, “Nanojet Trapping of a Single Sub-10 nm Upconverting Nanoparticle in the Full Liquid Water Temperature Range,” Nano Micro Small 17(7), 2006764 (2021).
11. R. Ali, F. A. Pinheiro, R. Dutra, F. Rosa, and P. A. M. Neto, “Enantioselective manipulation of single chiral nanoparticles using optical tweezers,” Nanoscale 12(8), 5031–5037 (2020).
12. X. Shan, F. Wang, D. Wang, S. Wen, C. Chen, X. Di, P. Nie, J. Liao, Y. Liu, L. Ding, P. J. Reece, and D. Jin, “Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles,” Nature Nanotechnology 16, 531–537 (2021).
13. J. L. Killian, F. Ye, and M. D. Wang, “Optical Tweezers: A Force to Be Reckoned With,” Cell 175(6), 1445–1448 (2018).
14. W. Zhang, H. Lei, “Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance,” Nanoscale 12(12), 6596–6602 (2020).
15. O. V. Polschikova, A. S. Machikhin, A. G. Ramazanova, I. A. Bratchenko, V. E. Pozhar, I. V. Danilycheva, O. R. Katunina, and M. V. Danilychev, “An Acousto-Optic Hyperspectral Unit for Histological Study of Microscopic Objects,” Optics and Spectroscopy 125(6), 1074–1080 (2018).
16. L. A. Bratchenko, I. A. Bratchenko, Y A. Khristoforova, D. N. Artemyev, D. Y. Konovalova, P. A. Lebedev, and V. P. Zakharov, “Raman spectroscopy of human skin for kidney failure detection,” Journal of Biophotonics 14(6), e202000360 (2020).
17. Z. Zhen, Y. Huang, Y. Feng, Y. Shen, and Z. Li, “An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials,” Optics Express 27(6), 9178–9188 (2019).
18. A. Darafsheh, D. Bollinger “Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders,” Optics Communications 402, 270–275 (2017).
19. A. Darafsheh, D. Bollinger, “Photonic nanojet properties of dielectric microcylinders,” Proceedings of SPIE 10106, 101061U (2017).
20. Y. E. Geints, A. A. Zemlyanov, I. V. Minin, and O. V. Minin, “Overcoming refractive index limit of mesoscale light focusing by means of specular-reflection photonic nanojet,” Optics Letters 45(14), 3885–3888 (2020).
21. S. Zhou, T. Zhou, “An ultra-narrow photonic nanojet generated from a high refractive-index micro-flatended cylinder,” Applied Physics Express 13, 042010 (2020).
22. A. A. Savelyeva, E. S. Kozlova, “Simulation of laser light focusing with two-layer dielectric microcylinders,” Computer Optics 45(2), 208–213 (2021).
23. V. D. Zaitsev, S. S. Stafeev, “The photonic nanojets formation by two-dimensional microprisms,” Computer Optics 44(6), 909–916 (2020).
24. A. Abramov, Y. Yue, M. Wang, Z. Wang, and Y. Xu, “Numerical Modeling of Photonic Jet behind Triangular Prism,” Asian Journal of Research and Reviews in Physics 4(1), AJR2P.63969 (2021).
25. S. Zhou, K. Li, and Y. Wang, “Tunable photonic nanojets from a micro-cylinder with a dielectric nano-layer,” Optik 225, 165878 (2021).
26. Y. Cao, Z. Liu, and O. V. Minin, “Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres,” Nanomaterials 9(2), 186 (2019).
27. D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Optics Letters 39(13), 3989 (2014).
28. A. A. Savelyeva, E. S. Kozlova, “Simulation of laser light focusing by a dielectric nanocylinder with gold core,” Journal of Physics: Conference Series 1368, 022030 (2019).
29. C.-Y. Liu, K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Optics Letters 40(22), 5303–5306 (2015).
30. A. A. Savelyeva, E. S. Kozlova, “Simulation of light focusing by a dielectric microcylinder with a metal film and gap on shadow side,” Journal of Physics: Conference Series 1745, 012010, (2021).
31. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Optics express 27(2), 1310–1325 (2019).
32. A. A. Savelyeva, E. S. Kozlova, “Simulation of laser light focusing by two-layered dielectric cylinders,” In 22nd International Conference on Transparent Optical Networks, 19–23 July 2020, 1–4 (2020).
33. M. N. O. Sadiku, “A simple introduction to finite element analysis of electromagnetic problems,” IEEE Transactions on Education 32(2), 85–93 (1989).
34. D. W. Pepper, J. C. Heinrich, The Finite Element Method: Basic Concepts and Aplications with MATLAB, MAPLE, and COMSOL, 3rd ed., CRC Press, Boca Raton, USA (2017).
35. S. Singh, R. S. Kaler, “Performance analysis of evanescent wave absorption plasmonic optical sensor with COMSOL FEM method simulation,” Procedia Computer Science 125, 376–381 (2018).
36. V. D. Zaitsev, S. S. Stafeev, “Photonic Jets Arrays Produced by Triangular Dielectric Prisms for Mid-IR Imaging,” In 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17–20 June 2019, 2610–2614 (2019).
37. E. S. Kozlova, V. V. Kotlyar, and S. A. Degtyarev, “Simulation of resonance focusing of a piсosecond pulse by a dielectric microcylinder,” Computer Optics 39(1), 45–51 (2015).
38. M. A. Born, E. Wolf, Principles of optics Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Cambridge University Press, London (1999).
39. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” In IEEE Transactions on Antennas and Propagation 14(3), 302–307 (1966).
40. S. D. Gedney, “Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics,” Synthesis Lectures on Computational Electromagnetics 6(1), 1–250 (2011).
41. X. Guo, Y. Ding, X. Chen, Y. Duan, and X. Ni, “Molding free-space light with guided wave–driven metasurfaces,” Science Advances 6(29), eabb4142 (2021).
42. A. G. Nalimov, “Energy flux of a vortex field focused using a secant gradient lens,” Computer Optics 44(5), 707–711 (2020).
43. E. S. Kozlova, S. S. Stafeev, S. A. Fomchenkov, V. V. Podlipnov, and V. V. Kotlyar, “Laser Light Focusing by Aluminium Zone Plate,” In 22nd International Conference on Transparent Optical Networks, 1–4 (2020).
44. S. Piltyay, A. Bulashenko, Y. Herhil, and O. Bulashenko, “FDTD and FEM Simulation of Microwave Waveguide Polarizers,” In IEEE 2nd International Conference on Advanced Trends in Information Theory, 357–363 (2020).
45. J. F. Shackelford, Introduction to Materials Science for Engineers, 5th ed., McGraw-Hill, New York (2000).
46. H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Progress in Photovoltaics: Research and Applications 7(4), 245–260 (1999).
47. T. D. Flaim, Y. Wang, and R. Mercado, “High-refractive-index polymer coatings for optoelectronics applications,” Advances in Optical Thin Films 5250, 423–434 (2004).
48. N. Liu, C. Petchakup, H. M. Tay, K. H. H. Li, and H. W. Hou, “Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications,” Cell Culture Techniques, 99–150 (2019).
49. W. Zhang, H. Lei, “Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance,” Nanoscale 12(12), 6596–6602 (2020).
50. S. Surdo, M. Duocastella and A. Diaspro, “Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research,” Micromachines 12(3), 256 (2021).
51. A. A. R. Neves, “Photonic nanojets in optical tweezers. Journal of Quantitative Spectroscopy and Radiative Transfer,” Journal of Quantitative Spectroscopy and Radiative Transfer 162, 122–132 (2015).
52. W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative Enhancement of Two-Photon-Absorption-Induced Photoluminescence from a 2D Perovskite-Microsphere Hybrid Dielectric Structure,” Advanced Functional Materials 28(26), 1707550 (2018).
53. H. Zhang, “Enhanced subwavelength photonic nanojet focusing via a graded-index round-head microcylinder,” Optik 203, 163973 (2020).
54. S. Cheng, X. Zhang, W. Ma, and S. Tao, “Detecting a Zeptogram of Pyridine with a Hybrid Plasmonic–Photonic Nanosensor,” ACS Sens 4(3), 586–594 (2019).
55. J. Wei, K. Zhang, T. Wei, Y. Wang, Y. Wu, and M. Xiao, “High-speed maskless nanolithography with visible light based on photothermal localization,” Scientific Reports 7, 43892 (2017).
56. R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nature Photonics 13, 116–122 (2019).
57. L. A. Bratchenko, I. A. Bratchenko, A. A. Lykina, M. V. Komarova, D. N. Artemyev, O. O. Myakinin, A. A. Moryatov, I. L. Davydkin, S. V. Kozlov, and V. P. Zakharov, “Comparative study of multivariative analysis methods of blood Raman spectra classification,” Journal of Raman Spectroscopy 51(2), 279–292 (2019).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+