Assessing Porcine Iris Elasticity and Mechanical Anisotropy with Optical Coherence Elastography

Christian Zevallos-Delgado
Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Taye T. Mekonnen
Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Fernando Zvietcovich
Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Manmohan Singh
Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Salavat Aglyamov
Department of Mechanical Engineering, University of Houston, Houston, TX, USA

Kirill Larin (Login required)
Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Paper #3443 received 21 Jun 2021; revised manuscript received 7 Sep 2021; accepted for publication 7 Sep 2021; published online 29 Oct 2021.

DOI: 10.18287/JBPE21.07.040304


The relaxation and contraction of the sphincter and dilator muscles of the iris play a critical role in vision, yet little is known about the biomechanical properties of these muscles. This study aimed to determine the elastic properties of the iris as a function of its anatomy and intraocular pressure. A high-resolution phase-sensitive OCE system was employed to detect acoustic radiation force induced propagation of elastic waves in the porcine iris in situ. Experiments were conducted at four different intraocular pressures (5, 10, 20, and 30 mmHg) with mechanical excitation at 1 kHz. We found that there was no significant difference in the wave speed at the different intraocular pressures. The results show that the stiffness of the iris was significantly higher in the semi-azimuthal orientation (mean wave speed of 2.5 m/s) than in the radial orientation (mean wave speed of 1.5 m/s). These measurements provide essential insights into the elastic properties of the iris, and they can be used for the characterization of eye conditions.


optical coherence elastography; iris; acoustic radiation force; biomechanics; elasticity; Young’s modulus; intraocular pressure

Full Text:



1. F. Jan, N. Min-Allah, S. Agha, I. Usman, and I. Khan, “A robust iris localization scheme for the iris recognition,” Multimedia Tools and Applications, Multimedia Tools and Applications 80(3), 4579–4605 (2021).

2. J. Bloom, M. Motlagh, and C. N. Czyz, “Anatomy, Head and Neck, Eye Iris Sphincter Muscle,” In StatPearls, StatPearls Publishing, Treasure Island (2018).

3. K. T. Moazed, The Iris: Understanding the Essentials, Springer Nature, Switzerland (2020). ISBN: 978-3-030-45755-6.

4. L. Di Cecilia, F. Marazzi, and L. Rovati, “A hyperspectral imaging system for the evaluation of the human iris spectral reflectance,” Proceedings of SPIE 10045, 100451S (2017).

5. I. Georgalas, P. Petrou, D. Papaconstantinou, D. Brouzas, C. Koutsandrea, and M. Kanakis, “Iris cysts: a comprehensive review on diagnosis and treatment,” Survey of Ophthalmology 63(3), 347–364 (2018).

6. W. Xue, S. Lin., X. Chen, Y. Jia, X. Fang, Y. Suo, Y. Ma, Y. Wang, and H. Zou, “In vivo noninvasive imaging and quantitative analysis of iris vessels,” Ophthalmic Research 64(5), 754–761 (2021).

7. Z. Da Soh, S. Thakur, S. Majithia, M. E. Nongpiur, and C. Y. Cheng, “Iris and its relevance to angle closure disease: a review,” British Journal of Ophthalmology 105(1), 3–8 (2021).

8. J. Hao, H. Fu, Y. Xu, Y. Hu, F. Li, X. Zhang, J. Liu, and Y. Zhao, “Reconstruction and Quantification of 3D Iris Surface for Angle-Closure Glaucoma Detection in Anterior Segment OCT,” In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 704–714 (2020).

9. C. Lee, G. Li, W. D. Stamer, and C. R. Ethier, “In vivo estimation of murine iris stiffness using finite element modeling,” Experimental Eye Research 202, 108374 (2021).

10. N. Rashidi, A. D. Pant, S. D. Salinas, M. Shah, V. S.Thomas, Ge Zhang, S.Dorairaj, and R. Amini, “Iris stromal cell nuclei deform to more elongated shapes during pharmacologically-induced miosis and mydriasis,” Experimental Eye Research 202, 108373 (2021).

11. S. Ye, Y. Zhou,C. Bao,Y. Chen, F. Lu, and F. Lu, “In vivo non-contact measurement of human iris elasticity by optical coherence elastography,” Journal of Biophotonics 14(9), e202100116 (2021).

12. J. E. Whitcomb, R. Amini, N. K. Simha, and V. H. Barocas, “Anterior–posterior asymmetry in iris mechanics measured by indentation,” Experimental Eye Research 93(4), 475–481 (2011).

13. Y. Lei, K. Zhang, C. Chen, H. Song, T. Lin, and Z. Liu, “Experimental research on the mechanical properties of porcine iris,” Clinical Biomechanics 23, S83–S87 (2008).

14. R. K. Tan, X. Wang, A. S. Y. Chan, M. E. Nongpiur, C. Boote, S. A. Perera, and M. J. A. Girard, “Permeability of the porcine iris stroma,” Experimental Eye Research 181, 190–196 (2019).

15. A. Narayanaswamy, M. H. Nai, M. E. Nongpiur, H. M. Htoon, A. Thomas, T. Sangtam, C. T. Lim, T. T. Wong, and T. Aung, “Young’s modulus determination of normal and glaucomatous human iris,” Investigative Ophthalmology & Visual Science 60(7), 2690–2695 (2019).

16. Y. Zhu, Y. Zhang, G. Shi, Q. Xue, X. Han, S. Ai, J. Shi, C. Xie, and X. He, “Quantification of iris elasticity using acoustic radiation force optical coherence elastography,” Applied Optics 59(34), 10739–10745 (2020).

17. M. Singh, A. Nair, S. Aglyamov, and K. V. Larin, “Compressional Optical Coherence Elastography of the Cornea,” Photonics 8(4), 111 (2021).

18. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” Journal of Biophotonics 14(2), e202000257 (2021).

19. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” Journal of Innovative Optical Health Sciences 10(06), 1742006 (2017).

20. M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” Journal of Biomedical Optics 22(12), 121720 (2017).

21. V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps Jr., “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLoS One 13(12), e0209480 (2018).

22. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nature Photonics 11(4), 215–221 (2017).

23. K. V. Larin, D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics,” Biomedical Optics Express 8(2), 1172–1202 (2017).

24. F. Zvietcovich, A. Nair, M. Singh, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus,” Investigative Ophthalmology & Visual Science 61(13), 7 (2020).

25. R. Wallace, M. Kirby, L. Gao, S. Song, I. Pelivanov, K. Zhou, R. K. Wang, M. O’Donnell, and T. Shen, “Time-resolved detection of corneal UV Collagen Cross-linking (CXL) using Non-contact Optical Coherence Elastography (OCE),” Investigative Ophthalmology & Visual Science 60(9), 6831–6831 (2019).

26. Y. Li, J. Zhu, J. J. Chen, J. Yu, Z. Jin, Y. Miao, A. W. Browne, Q. Zhou, and Z. Chen, “Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation,” APL Photonics 4(10), 106104 (2019).

27. S. Jouzdani, R. Amini, and V. H. Barocas, “Contribution of different anatomical and physiologic factors to iris contour and anterior chamber angle changes during pupil dilation: theoretical analysis,” Investigative Ophthalmology & Visual Science 54(4), 2977–2984 (2013).

28. H. A. Quigley, “Iris cross-sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure,” Journal of Glaucoma 18(3), 173–179 (2009).

29. F. Aptel, P. Denis, “Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis,” Ophthalmology 117(1), 3–10 (2010).

30. M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomedical Optics Express 5(5), 1419–1427 (2014).

31. S. Wang, K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomedical Optics Express 5(11), 3807–3821 (2014).

32. S. Wang, K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39(1), 41–44 (2014).

33. F. Zvietcovich, M. Singh, Y. S. Ambekar, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Micro Air-Pulse Spatial Deformation Spreading Characterizes Degree of Anisotropy in Tissues,” IEEE Journal of Selected Topics in Quantum Electronics 27(4), 1–10 (2020).

34. J. R. Rippy, M. Singh, S. R. Aglyamov, and K. V. Larin, “Ultrasound Shear Wave Elastography and Transient Optical Coherence Elastography: Side-by-Side Comparison of Repeatability and Accuracy,” IEEE Open Journal of Engineering in Medicine and Biology 2, 179–186 (2021).

35. F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” Journal of Biomedical Optics 22(3), 035010 (2017).

36. K. M. Meek, C. Knupp, “Corneal structure and transparency,” Progress in Retinal and Eye Research 49, 1–16 (2015).

37. W. M. Ewing, W. S. Jardetzky, and F. Press, “Elastic waves in layered media,” Graw-Hill Book Company, USA (1957).

38. C. Wu, S. R. Aglyamov, H. Zhang, and K. V. Larin, “Measuring the elastic wave velocity in the lens of the eye as a function of intraocular pressure using optical coherent elastography,” Quantum Electronics 49(1), 20 (2019).

39. S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Physics in Medicine & Biology 62(3), N45 (2017).

40. C. Wu, S. R. Aglyamov, Z. Han, M. Singh, C.-H. Liu, and K. V. Larin, “Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography,” Biomedical Optics Express 9(12), 6455–6466 (2018).

41. J. Heys, V. Barocas, “Mechanical characterization of the bovine iris,” Journal of Biomechanics 32(9), 999–1003 (1999).

42. A. M. G. Baptista, R. A. R. C. De Sousa, P. M. Serra, C. M. D. S. Abreu, and C. M. L. R. Da Silva, “Evaluation of discomfort of Goldmann tonometry without anaesthetic,” Ophthalmic and Physiological Optics 30(6), 854–859 (2010).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+