Mapping Large Strains in Phase-Sensitive OCT: Key Role of Supra-Pixel Displacement Tracking in Incremental Strain Evaluation

Alexander A. Sovetsky (Login required)
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Alexander L. Matveyev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Lev A. Matveev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Grigory V. Gelikonov
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia

Vladimir Y. Zaitsev
Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia


Paper #3508 received 14 Jul 2022; revised manuscript received 15 Aug 2022; accepted for publication 21 Aug 2022; published online 22 Sep 2022.

DOI: 10.18287/JBPE22.08.030304

Abstract

Displacement tracking is an important step in realization of compression optical coherence elastography (C-OCE), especially in the context of obtaining nonlinear stress-strain dependences and subsequent evaluation of the tissue Young’s modulus. The rapidly progressing phase-sensitive C-OCE, however, enables direct measurements of only rather small interframe strains (below 1%), for which displacements are also small. Obtaining stress-strain curves for larger strains (~10% and greater) in phase-sensitive C-OCE can be made via cumulation of interframe strains and particle displacements. The resultant values of the so-found cumulative displacements may significantly exceed the pixel size, whereas measurements of the phase variations in C-OCE are usually performed by comparing the signals from the same pixel in a series of compared scans. When displacements of particles in a series of acquired scans reach supra-pixel values, simple pixel-to-pixel estimation of interframe phase variations may lead to significant errors in evaluating linear and nonlinear elastic properties of tissues. Thus, for large strains, adequate accounting for the resultant supra-pixel displacements of order of several pixels and greater is of key importance for undistorted mapping of elastic properties of heterogeneous materials, as well as for correct tracking of boundaries separating tissue regions with different elastic properties. In this paper we discuss the elastographic procedures of correct tracking of supra-pixel displacements in phase-sensitive C-OCE and give real examples demonstrating the importance of such displacement tracking for undistorted reconstruction of two-dimensional maps of linear and nonlinear elastic properties of real biological tissues.

Keywords

Optical coherence elastography; compression elastography; OCE; strain mapping; elasticity mapping

Full Text:

PDF

References


1. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Optics Express 3(6), 199–211 (1998).

2. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrasonic Imaging 13(2), 111–134 (1991).

3. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomedical Optics Express 3(8), 1865–79 (2012).

4. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” Journal of Biophotonics 9(5), 499–509 (2016).

5. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” Journal of Biomedical Optics 21(11), 116005 (2016).

6. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Physics Letters 15(6), 065603 (2018).

7. K. M. Kennedy, L. Chin , R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography,” Scientific Reports 5, 15538 (2015).

8. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” Journal of Innovative Optical Health Sciences 10(6), 1742006 (2017).

9. K. V. Larin, D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics,” Biomedical Optics Express 8(2), 1172–1202 (2017).

10. M. A.Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” Journal of Biomedical Optics 22(12), 121720 (2017).

11. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” Journal of Biophotonics 14(2), e202000257 (2021).

12. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Applied Physics Letters 89(14), 144103 (2006).

13. R. K. Wang, S. J. Kirkpatrick, and M. T. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Applied Physics Letters 90(16), 164105 (2007).

14. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. I. Omelchenko, D. V. Shabanov, O. I. Baum, V. M. Svistushkin, and E. N. Sobol, “Optical coherence tomography for visualizing transient strains and measuring large deformations in laser-induced tissue reshaping,” Laser Physics Letters 13(11), 115603 (2016).

15. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomedical Optics Express 3(5), 1025 (2012).

16. O. I. Baum, V. Y. Zaitsev, A. V. Yuzhakov, A. P. Sviridov, M. L. Novikova, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, and E. N. Sobol, “Interplay of temperature, thermal-stresses and strains in laser-assisted modification of collagenous tissues: speckle- contrast and OCT-based studies,” Journal of Biophotonics 13(1), e201900199 (2019).

17. P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovremennye Tehnologii v Medicine 11(2), 25 (2019).

18. S. Lawman, P. W. Madden, V. Romano, Y. Dong, S. Mason, B. M. Williams, S. B. Kaye, C. E. Willoughby, S. P. Harding, Y.-C. Shen, and Y. Zheng, “Deformation velocity imaging using optical coherence tomography and its applications to the cornea,” Biomedical Optics Express 8(12), 5579–5593 (2017).

19. Y. Alexandrovskaya, O. Baum, A. Sovetsky, A. Matveyev, L. Matveev, E. Sobol, and V. Zaitsev, “Optical Coherence Elastography as a Tool for Studying Deformations in Biomaterials : Spatially-Resolved Osmotic Strain Dynamics in Cartilaginous Samples,” Materials 15, 904 (2022).

20. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrasonic Imaging 20(4), 260–274 (1998).

21. Y. Qiu, F. R. Zaki, N. Chandra, S. A. Chester, and X. Liu, “Nonlinear characterization of elasticity using quantitative optical coherence elastography,” Biomedical Optics Express 7(11), 4702 (2016).

22. E. V. Gubarkova, A. A. Sovetsky, L. A. Matveev, A. L. Matveyev, D. A. Vorontsov, A. A. Plekhanov, S. S. Kuznetsov, S. V. Gamayunov, A. Y. Vorontsov, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, “Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues,” Materials 15(9), 3308 (2022).

23. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: Demonstrations for corneal and cartilaginous tissues,” Laser Physics Letters 15(8), 085602 (2018).

24. Y. Bai, S. Cai, S. Xie, and B. Dong, “Adaptive incremental method for strain estimation in phase-sensitive optical coherence elastography,” Optics Express 29(16), 25327–25336 (2021).

25. E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomedical Optics Express 10(5), 2244 (2019).

26. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova,S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography”, Scientific Reports 10(5), 2244–2263 (2019).

27. W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomedical Optics Express 7(10), 4139–4152 (2016).

28. L. Chin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography,” Journal of Biophotonics 10(5), 690–700 (2016).

29. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Plekhanov, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, “Full-optical method of local stress standardization to exclude nonlinearity-related ambiguity of elasticity estimation in compressional optical coherence elastography,” Laser Physics Letters, 17(6), 065601 (2020).

30. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” Journal of Biophotonics 12(3), e201800250 (2019).

31. O. I. Baum, A. Yuzhakov, A. V. Bolshunov, V. I. Siplivyi, O. V. Khomchik, G. I. Zheltov, and E. Sobol, “New laser technologies in ophthalmology for normalisation of intraocular pressure and correction of refraction,” Quantum Electronics 47(9), 860–866 (2017).

32. S. Kling, “Optical coherence elastography by ambient pressure modulation for high-resolution strain mapping applied to patterned cross-linking,” Journal of the Royal Society, Interface 17(162), 20190786 (2020).

33. S. Kling, H. Khodadadi, and O. Goksel, “Optical Coherence Elastography-Based Corneal Strain Imaging During Low-Amplitude Intraocular Pressure Modulation,” Frontiers in Bioengineering and Biotechnology 7, 453 (2020).

34. M. Singh, A. Nair, S. Aglyamov, and K. Larin, “Compression optical coherence micro-elastography of the cornea,” Investigative Ophthalmology & Visual Science 62(8), 2033–2033 (2021).

35. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” Journal of Biomedical Optics 20(7), 075006 (2015).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+