Concentration Dependence of Optical Transmission and Extinction of Different Diatom Cultures

Julijana Cvjetinovic orcid (Login required)
Skolkovo Institute of Science and Technology, Moscow, Russia

Sergei Perkov
Skolkovo Institute of Science and Technology, Moscow, Russia

Maxim Kurochkin
Skolkovo Institute of Science and Technology, Moscow, Russia

Igor Sergeev
Skolkovo Institute of Science and Technology, Moscow, Russia
FSRC «Crystallography and Photonics» RAS, Moscow, Russia

Sergei German
Skolkovo Institute of Science and Technology, Moscow, Russia

Yekaterina Bedoshvili
Limnological Institute, Russian Academy of Sciences, Irkutsk, Russia
Skolkovo Institute of Science and Technology, Moscow, Russia

Nickolai Davidovich
T.I. Vyazemsky Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, Feodosiya, Russia
Skolkovo Institute of Science and Technology, Moscow, Russia

Alexander Korsunsky
University of Oxford, United Kingdom

Dmitry Gorin
Skolkovo Institute of Science and Technology, Moscow, Russia

Paper #3567 received 02 Dec 2022; revised manuscript received 06 Dec 2022; accepted for publication 07 Dec 2022; published online 30 Jan 2023. doi: 10.18287/JBPE23.09.010303.

DOI: 10.18287/JBPE23.09.010303


Diatoms are unicellular microalgae enclosed in a hierarchically structured silica cell wall that play a significant role in maintaining the health of the planet’s ecosystem. As one of the main photosynthesizers, they are responsible for 20–25% of the world’s oxygen release and carbon fixation. In order to develop technologies for the efficient extraction of carbon dioxide, for example, using bioreactors that provide optimal conditions for the growth of diatoms, it is also necessary to effectively track the diatom lifecycle, as well as control parameters that affect their growth. Here we offer a simple device consisting of LED illumination with a central wavelength of 505 nm that allows to monitor changes in diatom concentrations. We examined marine centric and freshwater pennate diatom strains with different morphologies, sizes, and volumes and obtained a linear dependence of the measured transmission on the concentration. The results were compared with the spectrophotometric approach, which showed a higher inaccuracy with respect to the linear fit. We believe that such an optical setup can be used to solve the problems of continuous flow monitoring of algae both in bioreactors as well as in their natural environment.


diatom algae; optical setup; spectrophotometry; fluorescence; microscopy

Full Text:



1. M. J. Behrenfeld, K. H. Halsey, E. Boss, L. Karp-Boss, A. J. Milligan, and G. Peers, “Thoughts on the evolution and ecological niche of diatoms,” Ecological Monographs 91(3), e01457 (2021).

2. S. Malviya, E. Scalco, S. Audic, F. Vincent, A. Veluchamy, J. Poulain, P. Wincker, D. Iudicone, C. de Vargas, L. Bittner, A. Zingone, and C. Bowler, “Insights into global diatom distribution and diversity in the world’s ocean,” Proceedings of the National Academy of Sciences 113(11), E1516–E1525 (2016).

3. E. De Tommasi, J. Gielis, and A. Rogato, “Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey,” Marine Genomics 35, 1–18 (2017).

4. A. M. Korsunsky, P. V. Sapozhnikov, J. Everaerts, and A. I. Salimon, “Nature’s neat nanostructuration: The fascinating frustules of diatom algae,” Materials Today 22, 159–160 (2019).

5. M. D.Guiry, G. M. Guiry, AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (accessed 1 December 2022). [].

6. R. Gordon, D. Losic, M. A. Tiffany, S. S. Nagy, and F. A. S. Sterrenburg, “The Glass Menagerie: diatoms for novel applications in nanotechnology,” Trends in Biotechnology 27(2), 116–127(2009).

7. N. A. Davidovich, O. I, Davidovich, Reproductive Biology of Diatoms, ARIAL, LLC, Simferopol (2022). ISBN 978-5-907587-63-2 [in Russian].

8. N. Sharma, D. P. Simon, A. M. Diaz-Garza, E. Fantino, A. Messaabi, F. Meddeb-Mouelhi, H. Germain, and I. Desgagné-Penix, “Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow,” Frontiers in Marine Science 8, 636613 (2021).

9. A. Bozarth, U.-G. Maier, and S. Zauner, “Diatoms in biotechnology: Modern tools and applications,” Applied Microbiology and Biotechnology 82(2), 195–201 (2009).

10. M. Mishra, A. P. Arukha, T. Bashir, D. Yadav, and G. B. K. S. Prasad, “All new faces of diatoms: Potential source of nanomaterials and beyond,” Frontiers in Microbiology 8, 1239 (2017).

11. A. M. Korsunsky, Y. D. Bedoshvili, J. Cvjetinovic, P. Aggrey, K. I. Dragnevski, D. A. Gorin, A. I. Salimon, and Y. V. Likhoshway, “Siliceous diatom frustules – A smart nanotechnology platform,” Materials Today: Proceedings 33(4), 2032–2040 (2020).

12. P. Aggrey, M. Nartey, Y. Kan, J. Cvjetinovic, A. Andrews, A. I. Salimon, K. I. Dragnevski, and A. M. Korsunsky, “On the diatomite-based nanostructure-preserving material synthesis for energy applications,” RSC Advances 11(51), 31884–31922 (2021).

13. H.-Y. Li, Y. Lu, J.-W. Zheng, W.-D. Yang, and J.-S. Liu, “Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis,” Marine Drugs 12(1), 153–166 (2014).

14. I. Barkia, L. Al-Haj, A. Abdul Hamid, M. Zakaria, N. Saari, and F. Zadjali, “Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties,” International Journal of Food Science & Technology 54(5), 1514–1522 (2019).

15. A. Burson, M. Stomp, E. Greenwell, J. Grosse, and J. Huisman, “Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community,” Ecology 99(5), 1108–1118 (2018).

16. P. Kuczynska, M. Jemiola-Rzeminska, and K. Strzalka, “Photosynthetic pigments in diatoms,” Marine Drugs 13(9), 5847–5881 (2015).

17. J. Cvjetinovic, A. I. Salimon, M. V. Novoselova, P. V. Sapozhnikov, E. A. Shirshin, A. M. Yashchenok, O. Yu. Kalinina, A. M. Korsunsky, and D. A. Gorin, “Photoacoustic and fluorescence lifetime imaging of diatoms,” Photoacoustics 18, 100171 (2020).

18. J. Cvjetinovic, Y. Bedoshvili, D. Nozdriukhin, O. Efimova, A. Salimon, N. Volokitina, A. Korsunsky, and D. Gorin, “In situ fluorescence / photoacoustic monitoring of diatom algae,” Proceedings of SPIE 11641, 116410G (2021).

19. J. Cvjetinovic, A. I. Salimon, M. V. Novoselova, P. V. Sapozhnikov, O. Y. Kalinina, A. M. Korsunsky, and D. A. Gorin, “Photoacoustic visualization of diatom algae,” Limnology and Freshwater Biology 3(4), 779-780 (2020).

20. J. Cvjetinovic, Y. D. Bedoshvili, D. V. Nozdriukhin, A. I. Salimon, A. M. Korsunsky, and D. A. Gorin, “Photonic tools for evaluating the growth of diatom colonies during long-term batch cultivation,” Journal of Physics: Conference Series 2172(1), 012011 (2022).

21. J. Cvjetinovic, D. V. Nozdriukhin, Y. D. Bedoshvili, A. I. Salimon, A. M. Korsunsky, and D. A. Gorin, “Assessment of diatom growth using fluorescence imaging,” Journal of Physics: Conference Series 1984, 012017 (2021).

22. L. Rodolfi, N. Biondi, A. Guccione, N. Bassi, M. D’Ottavio, G. Arganaraz, and M. R. Tredici, “Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors,” Biotechnology and Bioengineering 114(10), 2204–2210 (2017).

23. T. Yu. Plyusnina, S. S. Khruschev, N. S. Degtereva, I. V. Konyukhov, A. E. Solovchenko, M. Kouzmanova, V. N. Goltsev, G. Yu. Riznichenko, and A. B. Rubin, “Gradual changes in the photosynthetic apparatus triggered by nitrogen depletion during microalgae cultivation in photobioreactor,” Photosynthetica 58(Special Issue), 443–451 (2020).

24. S. S. Voznesenskiy, E. L. Gamayunov, A. Yu. Popik, Zh. V. Markina, and T. Yu. Orlova, “Temperature dependence of the parameters of laser-induced fluorescence and species composition of phytoplankton: The theory and the experiments,” Algal Research 44, 101719 (2019).

25. A. S. Thompson, J. C. Rhodes, and I. Pettman, Culture Collection of Algae and Protozoa: Catalogue of Strains, Amblesibe, UK (1998).

26. S. L. Polyakova, O. I. Davidovich, Y. A. Podunay, and N. A. Davidovich, “Modification of the ESAW culture medium used for cultivation of marine diatoms,” Marine Biological Journal 3(2), 73–80 (2018).

27. R. Croce, H. Van Amerongen, “Natural strategies for photosynthetic light harvesting,” Nature Chemical Biology 10, 492–501 (2014).

28. V. V. Tuchin (Ed.), Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd Ed., SPIE Digital Library, USA (2015). ISBN: 9781628415162.

29. E. S. Holdsworth, “Effect of growth factors and light quality on the growth, pigmentation and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum,” Marine Biology 86, 253–262 (1985).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+