Highly Stable 11-MUA Capped Gold Nanobipyramid for Refractive Index Sensing

Prajna N. Deviprasada
Manipal Academy of Higher Education, Karnataka, India

Rajeev K. Sinha (Login required)
Manipal Academy of Higher Education, Karnataka, India


Paper #3580 received 13 Jan 2023; revised manuscript received 18 Feb 2023; accepted for publication 23 Feb 2023; published online 24 Mar 2023.

DOI: 10.18287/JBPE23.09.010308

Abstract

Gold nanobipyramids (Au NBPs) are nanostructures with narrow plasmon resonances, which make them suitable for sensing applications. In the present work, Au NBPs of different aspect ratios were synthesized using a seed-mediated growth method by tuning the seed volume. The usual capping molecule CTAB was replaced by 11-mercaptoundecanoic acid (11-MUA), and the nanoparticle stability was studied. The 11-MUA capped NBPs were found to be more stable compared to the CTAB capped NBPs. The bulk refractive index sensitivities of all Au NBPs of CTAB and 11-MUA capped NBPs were measured using sucrose solutions of different weight percentages (0–30%). 11-MUA capped Au NBPs showed better refractive index sensitivity than CTAB capped Au NBPs. The NBPs of aspect ratio 3 showed maximum sensitivity of 353 nm/RIU.

Keywords

localized surface plasmon resonance (LSPR); gold nanobipyramids; refractive index sensing

Full Text:

PDF

References


1. K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical Reviews 111(6), 3828–3857 (2011).

2. K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annual Review of Physical Chemistry 58, 267–297 (2007).

3. M. Chauhan, V. K. Singh, “Review on recent experimental SPR/LSPR based fiber optic analyte sensors,” Optical Fiber Technology 64, 102580 (2021).

4. E. Petryayeva, U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Analytica Chimica Acta 706(1), 8–24 (2011).

5. H. Chen, L. Shao, K.C. Woo, T. Ming, H.Q. Lin, and J. Wang, “Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength,” The Journal of Physical Chemistry C 113(41), 17691–17697 (2009).

6. J. Wang, H. S. Zhou, “Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules,” Analytical Chemistry 80(18), 7174–7178 (2008).

7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The Journal of Physical Chemistry B 107(3), 668–677 (2003).

8. S. Jung, K. L. Shuford, and S. Park, “Optical property of a colloidal solution of platinum and palladium nanorods: localized surface plasmon resonance,” The Journal of Physical Chemistry C 115(39), 19049–19053 (2011).

9. P. Zheng, H. Tang, B. Liu, S. Kasani, L. Hung, and N. Wu, “Origin of strong and narrow localized surface plasmon resonance of copper nanocubes,” Nano Research 12, 63–68 (2019).

10. J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sensors and Actuators B: Chemical 195, 332–351 (2014).

11. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Review of synthesis and sensing applications of anisotropic silver and gold nanostructures,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 39(5), 050801 (2021).

12. T. H. Chow, N. Li, X. Bai, X. Zhuo, Lei Shao, and J. Wang, “Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles,” Accounts of Chemical Research 52(8), 2136–2146 (2019).

13. A. Campu, F. Lerouge, D. Chateau, F. Chaput, P. Baldeck, S. Parola, D. Maniu, A. M. Craciun, A.Vulpoi, S. Astilean, and M. Focsan, “Gold nanobipyramids performing as highly sensitive dual-modal optical immunosensors,” Analytical Chemistry 90(14), 8567–8575 (2018).

14. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Advanced Materials 13(18), 1389–1393 (2001).

15. M. Liu, P. Guyot-Sionnest, “Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids,” The Journal of Physical Chemistry B 109(47), 22192–22200 (2005).

16. X. Zhang, M. Tsuji, S. Lim, N. Mieyamae, M. Nishio, S. Hikino, and M. Umezu, “Synthesis and growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles,” Langmuir 23(11) 6372–6376 (2007).

17. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape-and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237(2008).

18. Y. Xu, X. Wang, L. Cheng, Z. Liu, and Q. Zhang, “High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability,” Chemical Engineering Journal 378, 122025 (2019).

19. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Refractive index sensitivity of triangular Ag nanoplates in solution and on glass substrate,” Sensors and Actuators A: Physical 305, 111948 (2020).

20. H. Hegde, C. Santhosh, and R. K. Sinha, “Seed mediated synthesis of highly stable CTAB capped triangular silver nanoplates for LSPR sensing,” Materials Research Express 6(10), 105075 (2019).

21. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Refractive index and formaldehyde sensing with silver nanocubes,” RSC advances 11(14), 8042–8050(2021).

22. R. K. Sinha, “Surface-enhanced Raman Scattering and Localized Surface Plasmon Resonance Detection of Aldehydes Using 4-ATP Functionalized Ag Nanorods,” Plasmonics 18, 241–253 (2022).

23. H. R. Hegde, S. Chidangil, and R. K. Sinha, “Refractive index sensitivity of Au nanostructures in solution and on the substrate,” Journal of Materials Science: Materials in Electronics 33(7), 4011–4024 (2022).

24. D. Chateau, A. Desert, F. Lerouge, G. Landaburu, S. Santucci, and S. Parola, “Beyond the Concentration Limitation in the Synthesis of Nanobipyramids and Other Pentatwinned Gold Nanostructures,” ACS Applied Materials & Interfaces 11(42), 39068–39076 (2019).

25. J. He, S. Unser, I. Bruzas, R. Cary, Z. Shi, R. Mehra, K. Aron, and L. Sagle, “The facile removal of CTAB from the surface of gold nanorods,” Colloids and Surfaces B: Biointerfaces 163, 140–145 (2018).

26. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods 9(7), 671–675 (2012).

27. S. Xu, W. Ouyang, P. Xie, Y. Lin, B. Qiu, Z. Lin, G. Chen, and L. Guo, “Highly Uniform Gold Nanobipyramids for Ultrasensitive Colorimetric Detection of Influenza Virus,” Analytical Chemistry 89(3), 1617–1623 (2017).

28. D. Chateau, A. Liotta, F. Vadcard, J. R. G. Navarro, F. Chaput, J. Lermé, F. Lerouge, and S. Parola, “From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects,” Nanoscale 7(5), 1934–1943 (2015).

29. C. Fang, G. Zhao, Y. Xiao, J. Zhao, Z. Zhang, and B. Geng, “Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties,” Scientific Reports 6(1), 36706 (2016).

30. G. Weng, X. Shen, J. Li, J. Zhu, J. Yang, and J. Zhao, “Multipole plasmon resonance in gold nanobipyramid: Effects of tip shape and size,” Physics Letters A 412, 127577 (2021).

31. J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors,” Sensors and Actuators B: Chemical 169, 360–367 (2012).

32. J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry 377(3), 528–539 (2003).

33. OIML, “Automated Refractometers: Methods and Means of Verification,” (2006).

34. D. F. Charles, “Refractive Indices of Sucrose-Water Solutions in the Range from 24 to 53% Sucrose,” Analytical Chemistry 37(3), 405–406 (1965).

35. C. F. Snyder, A. T. Hattenburg, “Refractive indices and densities of aqueous solutions of invert sugar,” National Bureau of Standards, Washington D. C. (1963).

36. L. Tian, E. Chen, N. Gandra, A. Abbas, and S. Singamaneni, “Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity,” Langmuir 28(50), 17435–17442 (2012).

37. E. Martinsson, B. Sepulveda, P. Chen, A. Elfwing, B. Liedberg, and D. Aili, “Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles,” Plasmonics 9, 773–780 (2014).

38. L. P. F. Peixoto, J. F. L. Santos, and G. F. S Andrade, “Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations,” Analytica Chimica Acta 1084, 71–77 (2019).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+