Multicentral Agent-Based Model of Four Waves of COVID-19 Spreading in Nizhny Novgorod Region of Russian Federation
Paper #3589 received 23 Jan 2023; revised manuscript received 13 Feb 2023; accepted for publication 13 Feb 2023; published online 16 Mar 2023.
DOI: 10.18287/JBPE23.09.010306
Abstract
Keywords
Full Text:
PDFReferences
1. T. Carletti, D. Fanelli, and F. Piazza, “COVID-19: The unreasonable effectiveness of simple models,” Chaos, Solitons & Fractals: X 5, 100034 (2020).
2. E. Aviv-Sharon, A. Aharoni, “Generalized logistic growth modeling of the COVID-19 pandemic in Asia,” Infectious Disease Modelling 5, 502–509 (2020).
3. N. T. P. Pang, A. Kamu, M. A. M. Kassim, and C. M. Ho, “Monitoring the impact of Movement Control Order (MCO) in flattening the cummulative daily cases curve of Covid-19 in Malaysia: A generalized logistic growth modeling approach,” Infectious Disease Modelling 6, 898–908 (2021).
4. A. S. Ahmar, E. B. Del Val, “SutteARIMA: Short-term forecasting method, a case: Covid-19 and stock market in Spain,” Science of The Total Environment 729, 138883 (2020).
5. C. Katris, “A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece,” Expert Systems with Applications 166, 114077 (2021).
6. W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115(772), 700–721 (1927).
7. S. He, Y. Peng, and K. Sun, “SEIR modeling of the COVID-19 and its dynamics,” Nonlinear Dynamics 101(3), 1667–1680 (2020).
8. S. Mwalili, M. Kimathi, V. Ojiambo, D. Gathungu, and R. Mbogo, “SEIR model for COVID-19 dynamics incorporating the environment and social distancing,” BMC Research Notes 13(1), 352 (2020).
9. L. López, X. Rodo X, “A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: simulating control scenarios and multi-scale epidemics,” Results in Physics 21, 103746 (2021).
10. F. Ying, N. O’Clery, “Modelling COVID-19 transmission in supermarkets using an agent-based model,” Plos One 16(4), e0249821 (2021).
11. Md. S. Shamil, F. Farheen, N. Ibtehaz, I. M. Khan, and M. S. Rahman, “An agent-based modeling of COVID-19: validation, analysis, and recommendations,” Cognitive Computation, 1–12 (2021).
12. N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, F. Limosin, and H. Leleu, “Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies,” MedRxiv 20076885, (2020).
13. N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, M. S. Rico, F. Limosin, and H. Leleu, “A stochastic agent-based model of the SARS-CoV-2 epidemic in France,” Nature Medicine 26(9), 1417–1421 (2020).
14. G. N. Rykovanov, S. N. Lebedev, O. V. Zatsepin, G. D. Kaminskii, E. V. Karamov, A. A. Romanyukha, A. M. Feigin, and B. N. Chetverushkin, “Agent-based simulation of the COVID-19 epidemic in Russia,” Herald of the Russian Academy of Sciences 92(8), 747–755 (2022).
15. H. Tembine, “Covid-19: data-driven mean-field-type game perspective,” Games 11(4), 51 (2020).
16. A. M. Hernández-Hernández, R. Huerta-Quintanilla, “Managing school interaction networks during the COVID-19 pandemic: Agent-based modeling for evaluating possible scenarios when students go back to classrooms,” Plos One 16(8), e0256363 (2021).
17. L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A multi-scale agent-based model of infectious disease transmission to assess the impact of vaccination and non-pharmaceutical interventions: The COVID-19 case,” Journal of Safety Science and Resilience 2(4), 199–207 (2021).
18. M. Kirillin, E. Sergeeva, A. Khilov, D. Kurakina, and N. Saperkin, “Monte Carlo simulation of the covid-19 spread in early and peak stages in different regions of the Russian Federation using an agent-based modelling,” in Saratov Fall Meeting, Chinese-Russian workshop on Biophotonics and Bioimaging-2020 1 (2020).
19. M. Kirillin, A. Khilov, V. Perekatova, E. Sergeeva, D. Kurakina, I. Fiks, N. Saperkin, M. Tang, Y. Zou, E. Macau, and E. Pelinovsky, “Simulation of the first and the second waves of COVID-19 spreading in Russian Federation regions using an agent-based model,” Journal of Biomedical Photonics & Engineering 9(1), 010302 (2023).
20. E. Mathieu, H. Ritchie, L. Rodés-Guirao, C. Appel, C. Giattino, J. Hasell, B. Macdonald, S. Dattani, D. Beltekian, E. Ortiz-Ospina, and M. Roser, Coronavirus (COVID-19) Vaccinations, Our World in Data (accessed 30 November 2022). [http://ourworldindata.org/covid-vaccinations?country=RUS].
© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+