Wearable Devices for Multimodal Optical Diagnostics of Microcirculatory-Tissue Systems: Application Experience in the Clinic and Space

Andrey Dunaev orcid (Login required)
Orel State University, Russia


Paper #3622 received 27 Jan 2023; revised manuscript received 17 Mar 2023; accepted for publication 22 Mar 2023; published online 1 Apr 2023.

DOI: 10.18287/JBPE23.09.020201

Abstract

This work demonstrates some results of the successful experience of using wearable devices for multimodal optical diagnostics of microcirculatory-tissue systems both in clinical practice and in the conditions of a Space experiment. The multimodal approach based on simultaneously applying a minimum of 2 optical diagnostic methods, for example, laser Doppler flowmetry and fluorescence spectroscopy, allows analysing of blood flow and metabolic processes in biological tissue more systematically. Combining several wearable devices into a distributed diagnostic system allows placing them simultaneously on symmetrical parts of the body (such as opposite limbs) thus providing a possibility to study the symmetry of the measured signals. The obtained data on the state of the microcirculatory-tissue systems of the human body recorded with wearable multimodal devices make it possible to assess the relationship and dynamics of oxygen delivery and utilization by tissues more comprehensively and reliably in a variety of diagnostic tasks.

Keywords

wearable devices; microcirculatory-tissue systems; multimodal optical diagnostics; laser Doppler flowmetry; fluorescence spectroscopy; Space experiment; zero gravity

Full Text:

PDF

References


1. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, Volume 1: Light-Tissue Interaction, 2nd ed., SPIE Press (2016). ISBN: 9781628419092.

2. T. Vo-Dinh (ed.), Biomedical photonics handbook: biomedical diagnostics, CRC press (2014). ISBN: 9780429214295.

3. A. V. Dunaev, “Optical Diagnostics in Human Diseases,” Diagnostics 11(5), 873 (2021).

4. A. I. Krupatkin, “Oscillatory Processes in the Diagnosis of the State of Microvascular-Tissue Systems,” Human Physiology 44(5), 581–591 (2018).

5. A. I. Zherebtsova, V. V. Dremin, I. N. Makovik, E. A. Zherebtsov, A. V. Dunaev, A. Goltsov, S. G. Sokolovski, and E. U. Rafailov, “Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs,” Frontiers in Physiology 10, 416 (2019).

6. V. V. Dremin, E. A. Zherebtsov, V. V. Sidorov, A. I. Krupatkin, I. N. Makovik, A. I. Zherebtsova, E. V. Zharkikh, E. V. Potapova, A. V. Dunaev, A. A. Doronin, and A. V. Bykov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” Journal of Biomedical Optics 22(8), 085003 (2017).

7. K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Progress in Quantum Electronics 56, 1–14 (2017).

8. E. V. Potapova, M. A. Mikhailova, A. K. Koroleva, D. D. Stavtsev, V. V. Dremin, A. V. Dunaev, N. Y. Yakushkina, A. I. Krupatkin, and N. B. Margaryants, “A Multiparametric Approach to the Assessment of Cutaneous Microcirculation in Dermatological Patients (on the Example of Patients with Psoriasis),” Human Physiology 47(6), 619–627 (2021).

9. E. O. Bryanskaya, I. N. Novikova, V. V. Dremin, R. Y. Gneushev, O. A. Bibikova, A. V. Dunaev, and V. G. Artyushenko, “Optical diagnostics of the maxillary sinuses by digital diaphanoscopy technology,” Diagnostics 11(1), 77 (2021).

10. E. Potapova, V. Dremin, E. Zherebtsov, and A. Mamoshin, “Multimodal Optical Diagnostic in Minimally Invasive Surgery,” Multimodal Optical Diagnostics of Cancer, 397–424 (2020).

11. E. A. Zherebtsov, E. V. Zharkikh, Y. I. Loktionova, A. I. Zherebtsova, V. V. Sidorov, A. I. Krupatkin, and A. V. Dunaev, “Wearable sensors for blood perfusion monitoring in patients with diabetes mellitus,” Chapter 5 in Biomedical Photonics for Diabetes Research, A. Dunaev, V. Tuchin (eds.), CRC press, 107–135 (2022).

12. J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,” Personalized Medicine 15(5), 429–448 (2018).

13. A. K. Yetisen, J. L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, and H. Butt, “Wearables in Medicine,” Advanced Materials 30(33), 1706910 (2018).

14. A. V. Dunaev, “Methodology of microcirculatory-tissue systems multimodal optical diagnostics,” Proceedings of SPIE 12192, 121920T (2022).

15. A. V. Dunaev, “Multiparameter optical methods and instruments for the diagnostics of human body microcirculatory-tissue systems,” Proceedings of SPIE 11845, 1184505 (2021).

16. K. Kuwabara, Y. Higuchi, T. Ogasawara, H. Koizumi, and T. Haga, “Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring,” in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6274–6277 (2014).

17. W. Iwasaki, H. Nogami, S. Takeuchi, M. Furue, E. Higurashi, and R. Sawada, “Detection of site-specific blood flow variation in humans during running by a wearable laser Doppler flowmeter,” Sensors (Switzerland) 15, 25507–25519 (2015).

18. V. V. Sidorov, Y. L. Rybakov, V. M. Gukasov, and G. S. Evtushenko, “A System of Local Analyzers for Noninvasive Diagnostics of the General State of the Tissue Microcirculation System of Human Skin,” Biomedical Engineering 55(6), 379–382 (2022).

19. E. Zherebtsov, S. Sokolovski, V. Sidorov, I. Rafailov, A. Dunaev, and E. U. Rafailov, “Novel wearable VCSEL-based blood perfusion sensor,” in International Conference Laser Optics 10063, 564 (2018).

20. M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technology and Health Care 7(2-3), 143–162 (1999).

21. A. Stefanovska, M. Bracic, and H. D. Kvernmo, “Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique,” IEEE Transactions on Biomedical Engineering 46(10), 1230–1239 (1999).

22. A. Tankanag, N. Chemeris, “Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin,” Physics in Medicine & Biology 53(21), 5967 (2008).

23. E. Zherebtsov, I. Kozlov, V. Dremin, A. Bykov, A. Dunaev, and I. Meglinski, “Diagnosis of skin vascular complications revealed by time-frequency analysis and laser Doppler spectrum decomposition,” IEEE Transactions on Biomedical Engineering 70(1), 3–14 (2023).

24. A. V. Dunaev, V. V. Sidorov, A. I. Krupatkin, I. E. Rafailov, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms,” Physiological Measurement 35(4), 607–621 (2014).

25. P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvascular Research 72(3), 120–127 (2006).

26. A. Bandrivskyy, A. Bernjak, P. McClintock, and A. Stefanovska, “Wavelet phase coherence analysis: application to skin temperature and blood flow,” Cardiovascular Engineering: an International Journal 4, 89–93 (2004).

27. R. Martini, A. Bagno, “The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations,” Clinical Hemorheology and Microcirculation 70(2), 213–229 (2018).

28. A. I. Krupatkin, “Influence of sensory peptidergic innervation on human skin blood flow oscillations in the range 0.047–0.069 Hz,” Human Physiology 33, 296–301 (2007).

29. G. J. Hodges, A. T. Del Pozzi, “Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation,” Microvascular Research 93, 87–91 (2014).

30. A. V. Dunaev, V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, K. S. Litvinova, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow,” Medical Engineering & Physics 37(6), 574–583 (2015).

31. A. Mayevsky, B. Chance, “Oxidation–reduction states of NADH in vivo: From animals to clinical use,” Mitochondrion 7(5), 330–339 (2007).

32. A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Novel measure for the calibration of laser Doppler flowmetry devices,” Proceedings of SPIE 8936, 89360D (2014).

33. E. V. Zharkikh, Y. I. Loktionova, V. V. Dremin, K. V. Podmasteryev, V. V. Sidorov, E. U. Rafailov, and A. V. Dunaev, “Comparison of wearable and bedside laser Doppler flowmetry and fluorescence spectroscopy monitors,” Proceedings of SPIE 12192, 121920J (2022).

34. E. A. Zherebtsov, K. Y. Kandurova, E. S. Seryogina, I. O. Kozlov, V. V. Dremin, A. I. Zherebtsova, A. V. Dunaev, and I. Meglinski, “The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence,” Proceedings of SPIE 11065, 110650R (2017).

35. E. V. Zharkikh, Y. I. Loktionova, G. I. Masalygina, A. I. Krupatkin, V. V. Sidorov, and A. V. Dunaev, “Optical noninvasive diagnostics of dynamic changes in the level of blood microcirculation and oxidative metabolism using temperature tests,” Proceedings of SPIE 11363, 1136321 (2020).

36. E. A. Zherebtsov, E. V. Zharkikh, I. Kozlov, A. I. Zherebtsova, Y. I. Loktionova, N. B. Chichkov, I. E. Rafailov, V. V. Sidorov, S. G. Sokolovski, A. V. Dunaev, and E. U. Rafailov, “Novel wearable VCSEL-based sensors for multipoint measurements of blood perfusion,” Proceedings of SPIE 10877, 1087708 (2019).

37. Y. I. Loktionova, E. V. Zharkikh, I. O. Kozlov, E. A. Zherebtsov, S. A. Bryanskaya, A. I. Zherebtsova, V. V. Sidorov, S. G. Sokolovski, A. V. Dunaev, and E. U. Rafailov, “Pilot studies of age-related changes in blood perfusion in two different types of skin,” Proceedings of SPIE 11065, 110650S (2019).

38. Y. I. Loktionova, E. A. Zherebtsov, E. V. Zharkikh, I. O. Kozlov, A. I. Zherebtsova, V. V. Sidorov, S. G. Sokolovski, I. E. Rafailov, A. V. Dunaev, and E. U. Rafailov, “Studies of age-related changes in blood perfusion coherence using wearable blood perfusion sensor system,” Proceedings of SPIE 11075, 1107507 (2019).

39. M. Saha, V. Dremin, I. Rafailov, A. Dunaev, S. Sokolovski, and E. Rafailov, “Wearable Laser Doppler Flowmetry Sensor: A Feasibility Study with Smoker and Non-Smoker Volunteers,” Biosensors 10(12), 201 (2020).

40. E. A. Zherebtsov, E. V. Zharkikh, I. O. Kozlov, Y. I. Loktionova, A. I. Zherebtsova, I. E. Rafailov, S. G. Sokolovski, V. V. Sidorov, A. V. Dunaev, and E. U. Rafailov, “Wearable sensor system for multipoint measurements of blood perfusion: Pilot studies in patients with diabetes mellitus,” Proceedings of SPIE 11079, 110791O (2019).

41. E. V. Zharkikh, Y. I. Loktionova, V. V. Sidorov, A. I. Krupatkin, G. I. Masalygina, and A. V. Dunaev, “Control of Blood Microcirculation Parameters in Therapy with Alpha-Lipoic Acid in Patients with Diabetes Mellitus,” Human Physiology 48(4), 456–464 (2022).

42. E. Zharkikh, Y. Loktionova, A. Zherebtsova, M. Tsyganova, E. Zherebtsov, and A. Tiselko, “Skin Blood Perfusion and Fluorescence Parameters in Pregnant Women with Type 1 Diabetes Mellitus,” in 2021 International Conference on Electrical Engineering and Photonics (EExPolytech), 238–240 (2021).

43. E. V. Zharkikh, Y. I. Loktionova, A. A. Fedorovich, A. Y. Gorshkov, and A. V. Dunaev, “Assessment of Blood Microcirculation Changes after COVID-19 Using Wearable Laser Doppler Flowmetry,” Diagnostics 13(5), 920 (2023).

44. A. A. Fedorovich, Y. I. Loktionova, E. V. Zharkikh, A. Y. Gorshkov, A. I. Korolev, V. A. Dadaeva, O. M. Drapkina, and E. A. Zherebtsov, “Skin microcirculation in middle-aged men with newly diagnosed arterial hypertension according to remote laser Doppler flowmetry data,” Microvascular Research 144, 104419 (2022).

45. A. A. Fedorovich, Y. I. Loktionova, E. V. Zharkikh, M. A. Mikhailova, J. A. Popova, A. V. Suvorov, and E. A. Zherebtsov, “Body position affects capillary blood flow regulation measured with wearable blood flow sensors,” Diagnostics 11(3), 436 (2021).

46. A. V. Dunaev, E. V. Zharkikh, Y. I. Loktionova, A. A. Fedorovich, V. V. Sidorov, A. V. Vasin, A. A. Misurkin, and V. I . Dubinin, “Application of wearable multimodal devices to study microcirculatory-tissue systems under microgravity conditions,” Proceedings of International Conference Laser Optics, 20–24 (2022).

47. O. G. Gazenko, E. B. Shulzhenko, V. F. Turchaninova, and A. D. Egorov, “Central and regional hemodynamics in prolonged space flights,” Acta Astronautica 17(2), 173–179 (1988).

48. H. Zhu, H. Wang, and Z. Liu, “Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review,” International Journal of Occupational Medicine and Environmental Health 28(5), 793 (2015).

49. J. A. Popova, A. V. Suvorov, R. N. Zaripov, and A. I. Dyachenko, “Exposure of inspiratory negative pressure breathing on cosmonauts during spaceflight,” Acta Astronautica 199, 438–444 (2022).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+