Nonlinear Optics of Skin: Enhancement of Autofluorescence and Second Harmonic Generation Signals by Immersion Optical Clearing

Anton Yu. Sdobnov (Login required)
University of Oulu, Finland

Jurgen Lademann
Charité – Universitätsmedizin Berlin, Germany

Valery V. Tuchin
Saratov State University, Russia
Tomsk State University, Russia
FRC “Saratov Scientific Centre of the Russian Academy of Sciences,” Russia

Maxim Darvin
Charité – Universitätsmedizin Berlin, Germany


Paper #8948 received 3 Apr 2023; revised manuscript received 30 May 2023; accepted for publication 31 May 2023; published online 3 Aug 2023

Abstract

Multiphoton microscopy and especially two-photon microscopy are actively used in dermatology for the diagnosis and analysis of skin diseases. The typical skin probing depth for these methods is limited to 150–200 µm due to the strong scattering properties of skin. The application of the optical clearing method to biological tissues makes it possible to control their optical properties, namely light scattering, by matching the refractive indices of the structural components of tissues. Reducing the scattering of the upper layers of tissue increases the depth of probing for any method of optical imaging by increasing the intensity of the optical signal recorded from the depth up to 6.6 times. This paper presents a brief review of the methods of nonlinear optics used to assess the condition of the skin, discusses the possibility of improving the efficiency of diagnosing skin diseases through the use of the optical clearing method. In particular, this paper discusses the enhancement of the intensity of autofluorescence and second harmonic generation signals during two-photon microscopy of the skin.

Keywords

skin; optical clearing; fluorescence; second harmonic generation; imaging; stratum corneum; dermis; collagen

Full Text:

PDF

References


1. J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy, Springer, New York, USA (2013).

2. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochemistry and Photobiology 68(5), 603 (1998).

3. B. Valeur, J. C. Brochon (Eds.), New trends in fluorescence spectroscopy: applications to chemical and life sciences, Springer Series on Fluorescence 1, Springer Berlin, Heidelberg (2012). ISBN: 978-3-642-56853-4.

4. E. A. Shirshin, B. P. Yakimov, M. E. Darvin, N. P. Omelyanenko, S. A. Rodionov, Y. I. Gurfinkel, V. V. Fadeev, and A. V. Priezzhev, “Label–free multiphoton microscopy: The origin of fluorophores and capabilities for analyzing biochemical processes,” Biochemistry (Moscow) 84, 69–88 (2019).

5. M. Kröger, J. Scheffel, V. V. Nikolaev, E. A. Shirshin, F. Siebenhaar, J. Schleusener, J. Lademann, M. Maurer, and M. E. Darvin, “In vivo non–invasive staining–free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two–photon fluorescence lifetime imaging,” Scientific Reports 10, 14930 (2020).

6. S. W. Perry, R. M. Burke, and E. B. Brown, “Two–photon and second harmonic microscopy in clinical and translational cancer research,” Annals of Biomedical Engineering 40, 277–291 (2012).

7. J. Liu, “Two–photon microscopy in pre–clinical and clinical cancer research,” Frontiers of Optoelectronics 8, 141–151 (2015).

8. M. Ulrich, Klemp, M. E. Darvin, K. König, J. Lademann, and M. C. Meinke,“In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph,” Journal of Biomedical Optics 18(6), 061229 (2013).

9. M. Weinigel, H. G. Breunig, M. Kellner–Höfer, R. Bückle, M. E. Darvin, M. Klemp, J. Lademann, and K. König, “In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti–Stokes Raman scattering tomography,” Laser Physics Letters 11(5), 055601 (2014).

10. M. Klemp, , Meinke, M. C., Weinigel, M., Röwert-Huber, H. J., König, K., Ulrich, M., J. Lademann, and M. E. Darvin, “Comparison of morphologic criteria for actinic keratosis and squamous cell carcinoma using in vivo multiphoton tomography,” Experimental Dermatology 25(3), 218–222 (2016).

11. M. Kröger, J. Scheffel,, E. A. Shirshin, J. Schleusener, M. C. Meinke, J. Lademann, M. Maurer, and M. E. Darvin, “Label–free imaging of M1 and M2 macrophage phenotypes in the human dermis in vivo using two–photon excited FLIM,” ELife 11, e72819 (2022).

12. O. G. L. Zakharkina, E. A. Sergeeva, M. Y. Kirillin, and N. Y. Ignatieva, “Analysis of laser–induced modification of collagen structure using nonlinear optical microscopy,” Quantum Electronics 50(1), 76 (2020).

13. A. Y. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, and V. V. Tuchin, “Recent progress in tissue optical clearing for spectroscopic application,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 197, 216–229 (2018).

14. A. Y. Sdobnov, J. Lademann, M. E. Darvin, and V. V. Tuchin, “Methods for optical skin clearing in molecular optical imaging in dermatology,” Biochemistry (Moscow) 84, 144–158 (2019).

15. M. Göppert-Mayer, “Über elementarakte mit zwei quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931).

16. W. Kaiser, C. G. B. Garrett, “Two–photon excitation in Ca F 2: Eu 2+,” Physical Review Letters 7(6), 229 (1961).

17. W. Denk, D. W. Piston, and W. W. Webb, “Two–photon molecular excitation in laser–scanning microscopy. In Handbook of biological confocal microscopy,” Chapter in Handbook of Biological Confocal Microscopy, Springer, New York, USA (1995).

18. M. E. Darvin, N. N. Brandt, and J. Lademann, “Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy,” Optics and Spectroscopy 109, 205–210 (2010).

19. J. Schleusener, J. Lademann, and M. E. Darvin, “Depth–dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo,” Journal of Biomedical Optics 22(9), 091503 (2017).

20. J. Icha, M. Weber, J. C. Waters, and C. Norden, “Phototoxicity in live fluorescence microscopy, and how to avoid it,” BioEssays 39(8), 1700003 (2017).

21. K. König, A. Uchugonova, “Multiphoton imaging and nanoprocessing of human stem cells,” Chapter 1 in Laser Imaging and Manipulation in Cell Biology, F. S. Pavone (Ed.), John Wiley & Sons, Weinheim (2010). ISBN:9783527632053.

22. K. König, “Clinical multiphoton tomography,” Journal of Biophotonics 1(1), 13–23 (2008).

23. V. H. P. Infante, R. Bennewitz, M. Kröger, M. C. Meinke, and M. E. Darvin, “Human glabrous skin contains crystallized urea dendriform structures in the stratum corneum which affect the hydration levels,” Experimental Dermatology (2023).

24. Y. P. Sinichkin, S. R. Utz, A. H. Mavliutov, and H. A. Pilipenko, “In vivo fluorescence spectroscopy of the human skin: experiments and models,” Journal of Biomedical Optics 3(2), 201–211 (1998).

25. M. E. Darvin, J. Lademann, J. von Hagen, S. B. Lohan, H. Kolmar, M. C. Meinke, and S. Jung, “Carotenoids in human skin in vivo: Antioxidant and photo–protectant role against external and internal stressors,” Antioxidants 11(8), 1451 (2022).

26. B. P. Yakimov, E. A. Shirshin, J. Schleusener, A. S. Allenova, V. V. Fadeev, and M. E. Darvin, “Melanin distribution from the dermal–epidermal junction to the stratum corneum: non–invasive in vivo assessment by fluorescence and Raman microspectroscopy,” Scientific Reports 10, 14374 (2020).

27. K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence studies of melanin by stepwise two–photon femtosecond laser excitation,” Journal of Fluorescence 10, 275 (2000).

28. A. M. Pena, E. Decencière, S. Brizion, P. Sextius, S. Koudoro, T. Baldeweck, and E. Tancrède–Bohin, “In vivo melanin 3D quantification and z–epidermal distribution by multiphoton FLIM, phasor and Pseudo–FLIM analyses,” Scientific Reports 12, 1642 (2022).

29. V. Marcos-Garcés, P. Molina Aguilar, C. Bea Serrano, V. García Bustos, J. Benavent Seguí, A. Ferrández Izquierdo, and A. Ruiz-Saurí, “Age-related dermal collagen changes during development, maturation and ageing–a morphometric and comparative study,” Journal of Anatomy 225(1), 98–108 (2014).

30. G. J. Fisher, S. Kang, J. Varani, Z. Bata–Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology 138(11), 1462–1470 (2002).

31. D. S. James, P. J. Campagnola, “Recent advancements in optical harmonic generation microscopy: Applications and perspectives,” BME Frontiers 2021, 3973857 (2021).

32. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, “In vivo assessment of human skin aging by multiphoton laser scanning tomography,” Optics Letters 31(19), 2879–2881 (2006).

33. M. E. Darvin, H. Richter, Y.J. Zhu, M.C. Meinke, F. Knorr, S.A. Gonchukov, K. Köenig and J. Lademann, “Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging,” Quantum Electronics 44(7), 646 (2014).

34. O. M. Vanakker, D. Hemelsoet, and A. De Paepe, “Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis,” Stroke Research and Treatment 2011, 712903 (2011).

35. F. Malfait, M. Castori, C. A. Francomano, C. Giunta, T. Kosho, and P. H. Byers, “The ehlers–danlos syndromes,” Nature Reviews Disease Primers 6, 64 (2020).

36. B. Shiferaw, V. Miro, C.Smith, J. Akella, W. Chua, and Z. Kim, “Goodpasture’s disease: an uncommon disease with an atypical clinical course,” Journal of Clinical Medicine Research 8(1), 52–55 (2016).

37. A. A. Plekhanov, A. L. Potapov, M. V. Pavlov, V. V. Elagin, E. V. Gubarkova, A. A. Sovetsky, L. A. Matveev, D. A. Vorontsov, A. L. Matveyev, A. Y. Vorontsov, S. V. Gamayunov, E. V. Zagaynova, M. A. Sirotkina, V. Y. Zaitsev, and N. D. Gladkova, “Side-by-Side OCE-Study of Elasticity and SHG-Characterization of Collagen Fibers in Breast Cancer Tissue before and after Chemotherapy,” Journal of Biomedical Photonics & Engineering 9(2), 020305 (2023).

38. T. H. Tsai, S. H. Jee, C. Y. Dong, and S. J. Lin, “Multiphoton microscopy in dermatological imaging,” Journal of Dermatological Science 56(1), 1–8 (2009).

39. S. J. Lin, S. H. Jee, and C. Y. Dong, “Multiphoton microscopy: a new paradigm in dermatological imaging,” European Journal of Dermatology 17(5), 361–366 (2007).

40. J. Paoli, M. Smedh, and M. B. Ericson, “Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers,” Seminars in Cutaneous Medicine and Surgery 28(3), 190–195 (2009).

41. E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. König, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” Journal of Investigative Dermatology 129(7), 1752–1758 (2009).

42. R. de Andrade Natal, J. Adur, C. L. Cesar, and J. Vassallo, “Tumor extracellular matrix: lessons from the second–harmonic generation microscopy,” Surgical and Experimental Pathology 4, 7 (2021).

43. P. Anker, L. Fésűs, N. Kiss, J. Noll, K. Becker, E. Kuroli, B. Mayer ,S. Bozsányi, K. Lőrincz, I. Lihacova,A. Lihachev, M. Lange, N. Wikonkál, and M. Medvecz, “Visualization of keratin with diffuse reflectance and autofluorescence imaging and nonlinear optical microscopy in a rare keratinopathic ichthyosis,” Sensors 21(4), 1105 (2021).

44. P. J. Su, W. L. Chen, J. B. Hong, T. H. Li, R. J. Wu, C. K. Chou, and C. Y. Dong, “Discrimination of collagen in normal and pathological skin dermis through second–order susceptibility microscopy,” Optics Express 17(13), 11161–11171 (2009).

45. Y. Liu, X. Zhu, Z. Huang, J. Cai, R. Chen, S. Xiong, G. Chen and H. Zeng, “Texture analysis of collagen second–harmonic generation images based on local difference local binary pattern and wavelets differentiates human skin abnormal scars from normal scars,” Journal of Biomedical Optics 20(1), 016021 (2015).

46. J. P. Junker, J. Philip, E. Kiwanuka, F. Hackl, E. J. Caterson, and E. Eriksson, “Assessing quality of healing in skin: review of available methods and devices,” Wound Repair and Regeneration 22(S1), 2–10 (2014).

47. N. Kumar, P. Kumar, S. N. Badagabettu, K. Prasad, R. Kudva, and R. C. Vasudevarao, “Surgical implications of asymmetric distribution of dermal collagen and elastic fibres in two orientations of skin samples from extremities,” Plastic Surgery International 2014, 364573 (2014).

48. P. D. Verhaegen, P. P. Van Zuijlen, N. M. Pennings, J. Van Marle, F. B. Niessen, C. M. Van Der Horst, and E. Middelkoop, “Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: an objective histopathological analysis,” Wound Repair and Regeneration 17(5), 649–656 (2009).

49. M. Kröger, J. Schleusener, J. Lademann, M. C. Meinke, S. Jung, and M. E. Darvin, “Tattoo Pigments Are Localized Intracellularly in the Epidermis and Dermis of Fresh and Old Tattoos: In vivo Study Using Two–Photon Excited Fluorescence Lifetime Imaging,” Dermatology 239(3), 478–493 (2023).

50. N. L. Rosin, N. Agabalyan, K. Olsen, G. Martufi, V. Gabriel, J. Biernaskie, and E. S. Di Martino, “Collagen structural alterations contribute to stiffening of tissue after split-thickness skin grafting,” Wound Repair and Regeneration 24(2), 263–274 (2016).

51. S. Ma, G. He, W. Yang, and Y. Wang, “In Vivo Visualization of Collagen Transdermal Absorption by a Combined Second–harmonic Generation and Two–photon Excited Fluorescence Method,” Preprint (Version 1) available at Research Square (2021).

52. M. L. Noorlander, P. Melis, A. Jonker, and C. J. V. Noorden, “A quantitative method to determine the orientation of collagen fibers in the dermis,” Journal of Histochemistry & Cytochemistry 50(11), 1469–1474 (2002).

53. S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” Journal of Biomedical Optics 16(4), 040502 (2011).

54. L. Mostaço–Guidolin, N. L. Rosin, and T. L. Hackett, “Imaging collagen in scar tissue: developments in second harmonic generation microscopy for biomedical applications,” International Journal of Molecular Sciences 18(8), 1772 (2017).

55. G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio–Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” Journal of Biophotonics 12(5), e201800336 (2019).

56. J. K. Pijanka, P. P. Markov, D. Midgett, N. G. Paterson, N. White, E. J. Blain, T. D. Nguyen, H. A. Quigley, and C. Boote, “Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: application to the human optic nerve head,” Journal of Biophotonics 12(5), e201800376 (2019).

57. K. Yang, K. Yu, and Q. Li, “Modal parameter extraction based on Hilbert transform and complex independent component analysis with reference,” Mechanical Systems and Signal Processing 40(1), 257–268 (2013).

58. R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics (6), 610–621 (1973).

59. M. Kröger, J. Schleusener, S. Jung, and M. E. Darvin, “Characterization of collagen I fiber thickness, density, and orientation in the human skin in vivo using second–harmonic generation imaging,” Photonics 8(9), 404 (2021).

60. S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H.Jee, and C. Y. Dong, “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second–harmonic generation microscopy,” Optics Letters 30(17), 2275–2277 (2005).

61. M. E. Darvin, H. Richter, S. Ahlberg, S. F. Haag, M. C. Meinke, D. Le Quintrec, O. Douceta, and J. Lademann, “Influence of sun exposure on the cutaneous collagen/elastin fibers and carotenoids: negative effects can be reduced by application of sunscreen,” Journal of Biophotonics 7(9), 735–743 (2014).

62. S. Springer, M. Zieger, K. Koenig, M. Kaatz, J. Lademann, and M. E. Darvin, “Optimization of the measurement procedure during multiphoton tomography of human skin in vivo,” Skin Research and Technology 22(3), 356–362 (2016).

63. S. J. Tseng, Y. H. Lee, Z. H. Chen, H. H. Lin, C. Y. Lin, and S. C. Tang, “Integration of optical clearing and optical sectioning microscopy for three–dimensional imaging of natural biomaterial scaffolds in thin sections,” Journal of Biomedical Optics 14(4), 044004 (2009).

64. R. Cisek, A. Joseph, M. Harvey, and D. Tokarz, “Polarization–sensitive second harmonic generation microscopy for investigations of diseased collagenous tissues,” Frontiers in Physics 9, 726996 (2021).

65. T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization–resolved second–harmonic–generation microscopy,” Optics Express 17(2), 912–923 (2009).

66. S. I. Fukushima, M. Yonetsu, and T. Yasui, “Polarization–resolved second–harmonic–generation imaging of dermal collagen fiber in prewrinkled and wrinkled skins of ultraviolet–B–exposed mouse,” Journal of Biomedical Optics 24(3), 031006 (2018).

67. Y. Tanaka, E. Hase, S. Fukushima, Y. Ogura, T. Yamashita, T. Hirao, T. Araki, and T. Yasui, “Motion–artifact–robust, polarization–resolved second–harmonic–generation microscopy based on rapid polarization switching with electro–optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin,” Biomedical Optics Express 5(4), 1099–1113 (2014).

68. I. Miler, M. D. Rabasovic, M. Aleksic, A. J. Krmpot, A. Kalezic, A. Jankovic, B. Korac, and A. Korac, “Polarization-resolved SHG imaging as a fast screening method for collagen alterations during aging: Comparison with light and electron microscopy,” Journal of Biophotonics 14(3), e202000362 (2021).

69. E. A. Genina., A. N Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Review of Medical Devices 7(6), 825–842 (2010).

70. I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, and F. S. Pavone, “In–vivo and ex–vivo optical clearing methods for biological tissues,” Biomedical Optics Express 10(10), 5251–5267 (2019).

71. V. V. Tuchin (Ed.), Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed., SPIE Press, Bellingham, WA, USA (2015). ISBN: 9781628415162.

72. V. V. Tuchin, Optical clearing of tissues and blood, SPIE Press, Bellingham, WA, USA (2006). ISBN: 9780819460066.

73. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin,“Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin,” Journal of Biophotonics 8(4), 332–346 (2015).

74. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in–depth monitoring of molecular diffusion,” IEEE Journal of Selected Topics in Quantum Electronics 18(3), 1244–1259 (2011).

75. A. Jaafar, M. E. Darvin, V. V. Tuchin, and M. Veres, “Confocal Raman Micro–Spectroscopy for Discrimination of Glycerol Diffusivity in Ex Vivo Porcine Dura Mater,” Life 12(10), 1534 (2022).

76. K. V. Berezin, K. N. Dvoretski, M. L. Chernavina, A. M. Likhter, V. V. Smirnov, I. T. Shagautdinova, E. M. Antonova, E. Y. Stepanovich, E. A. Dzhalmuhambetova, and V. V. Tuchin, “Molecular modeling of immersion optical clearing of biological tissues,” Journal of Molecular Modeling 24, 45 (2018).

77. V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE Journal of Selected Topics in Quantum Electronics 13(6), 1621–1628 (2007).

78. A. Bykov, T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M. T. Nieminen, V. Tuchin, and I. Meglinski, “Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage,” Journal of Biophotonics 9(3), 270–275 (2016).

79. A. Sdobnov, M. E. Darvin, J. Lademann, and V. Tuchin, “A comparative study of ex vivo skin optical clearing using two-photon microscopy,” Journal of Biophotonics 10(9), 1115–1123 (2017).

80. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Physics in Medicine & Biology 51(6), 1479 (2006).

81. R. W. Sun, V. V. Tuchin, V. P. Zharov, E. I. Galanzha, and G. T. Richter, “Current status, pitfalls and future directions in the diagnosis and therapy of lymphatic malformation,” Journal of Biophotonics 11(8), e201700124 (2018).

82. Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Optics Letters 38(20), 4236–4239 (2013).

83. D. Zhu, K. V Larin., Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Reviews 7(5), 732–757 (2013).

84. A. Jaafar, M. H. Mahmood, R. Holomb, L. Himics, T. Váczi, A. Y. Sdobnov, V. V. Tuchin, and M. Veres, “Ex–vivo confocal Raman microspectroscopy of porcine skin with 633/785–NM laser excitation and optical clearing with glycerol/water/DMSO solution,” Journal of Innovative Optical Health Sciences 14(05), 2142003 (2021).

85. P. Liu, Y. Huang, Z. Guo, J. Wang, Z. Zhuang, and S. Liu, “Discrimination of dimethyl sulphoxide diffusion coefficient in the process of optical clearing by confocal micro–Raman spectroscopy,” Journal of Biomedical Optics 18(2), 020507 (2013).

86. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 36(2), 72–75 (2005).

87. V. Kalchenko, I. Meglinski, A. Sdobnov, Y. Kuznetsov, and A. Harmelin, “Combined laser speckle imaging and fluorescent intravital microscopy for monitoring acute vascular permeability reaction,” Journal of Biomedical Optics 24(6), 060501 (2019).

88. O. F. Stumpp, A. J. Welch, T. E. Milner, and J. Neev, “Enhancement of transepidermal skin clearing agent delivery using a 980 nm diode laser,” Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 37(4), 278–285 (2005).

89. O. Stumpp, B. Chen, and A. J. Welch, “Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery,” Journal of Biomedical Optics 11(4), 041118 (2006).

90. A. Y. Sdobnov, V. V. Tuchin, J. Lademann, and M. E. Darvin, “Confocal Raman microscopy supported by optical clearing treatment of the skin—influence on collagen hydration,” Journal of Physics D: Applied Physics 50(28), 285401 (2017).

91. A. Y. Sdobnov, M. E. Darvin, J. Schleusener, J. Lademann, and V. V. Tuchin, “Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents—Quantitative analysis using confocal Raman microscopy,” Journal of Biophotonics 12(5), e201800283 (2019).

92. A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” Journal of Investigative Dermatology 121(6), 1332–1335 (2003).

93. T. Yasui, T. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two–dimensional second–harmonic–generation polarimetry,” Journal of Biomedical Optics 9(2), 259 (2004).

94. C. Zhang, W. Feng, “Assessment of tissue-specific changes in structure and function induced by in vivo skin/skull optical clearing techniques,” Lasers in Surgery and Medicine 54(3), 447–458 (2022).

95. V. Hovhannisyan, P. S. Hu, S. J. Chen, C. S. Kim, and C. Y. Dong, “Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging,” Journal of Biomedical Optics 18(4), 046004 (2013).

96. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” Journal of Biophotonics 3(1–2), 44–52 (2010).

97. F. S. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson, “Contrast and depth enhancement in two–photon microscopy of human skin ex vivo by use of optical clearing agents,” Optics Express 13(7), 2337–2344 (2005).

98. J. V. Smeden, M. Janssens, G. S. Gooris, and J. Bouwstra, “The important role of stratum corneum lipids for the cutaneous barrier function,” Biochimica et Biophysica Acta (BBA)–Molecular and Cell Biology of Lipids 1841(3), 295–313 (2014).

99. M. E. Darvin, J. Schleusener, J. Lademann, and C. S. Choe, “Current views on noninvasive in vivo determination of physiological parameters of the stratum corneum using confocal Raman microspectroscopy,” Skin Pharmacology and Physiology 35(3), 125–136 (2022).

100. M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing dynamics with quantitative nonlinear multimodal microscopy,” Applied Optics 48(10), D79–D87 (2009).

101. E. V. Migacheva, A. B. Pravdin, and V. V. Tuchin, “Alterations in autofluorescence signal from rat skin ex vivo under optical immersion clearing,” Journal of Innovative Optical Health Sciences 3(03), 147–152 (2010).

102. A. Hasanzadeh, G. Dehghan, M. Shaghaghi, Y. Panahi, A. Jouyban, and R. Yekta, “Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol,” Journal of Molecular Liquids 248, 459–467 (2017).

103. J. H. Lai, E. Y. Liao, Y. H. Liao, and C. K. Sun, “Investigating the optical clearing effects of 50% glycerol in ex vivo human skin by harmonic generation microscopy,” Scientific Reports 11, 329 (2021).

104. P. D. Agrba, M. Y. Kirillin, A. I. Abelevich, E. V. Zagaynova, and V. A. Kamensky, “Compression as a method for increasing the informativity of optical coherence tomography of biotissues,” Optics and Spectroscopy 107, 853–858 (2009).

105. E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE Journal of Selected Topics in Quantum Electronics 2(4), 943–950 (1996).

106. I. Y. Yanina, J. Schleusener, J. Lademann, V. V. Tuchin, and M. E. Darvin, “The effectiveness of glycerol solutions for optical clearing of the intact skin as measured by confocal Raman microspectroscopy,” Optics and Spectroscopy 128, 759–765 (2020).

107. M. E. Darvin, C. S. Choe, J. Schleusener, and J. Lademann, “Non–invasive depth profiling of the stratum corneum in vivo using confocal Raman microscopy considering the non–homogeneous distribution of keratin,” Biomedical Optics Express 10(6), 3092–3103 (2019).

108. I. Carneiro, S. Carvalho, R. Henrique, L. M. Oliveira, and V. V Tuchin, “A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues,” Journal of Biophotonics 12(4), e201800333 (2019).

109. J. A. Bouwstra, A. De Graaff, G. S. Gooris, J. Nijsse, J. W. Wiechers, and A. C. V. Aelst, “Water distribution and related morphology in human stratum corneum at different hydration levels,” Journal of Investigative Dermatology 120(5), 750–758 (2003).

110. V. D. Genin, D. K. Tuchina, A. J. Sadeq, E. A. Genina, V. V. Tuchin, and A. N. Bashkatov, “Ex vivo investigation of glycerol diffusion in skin tissue,” Journal of Biomedical Photonics & Engineering 2(1), 010303 (2016).

111. V. D. Genin, E. A. Genina, V. V. Tuchin, and A. N.Bashkatov, “Glycerol effects on optical, weight and geometrical properties of skin tissue,” Journal of Innovative Optical Health Sciences 14(05), 2142006 (2021).

112. O. Nadiarnykh, P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Optics Express 17(7), 5794–5806 (2009).

113. C. P. Neu, T. Novak, K. F. Gilliland, P. Marshall, and S. Calve, “Optical clearing in collagen–and proteoglycan–rich osteochondral tissues,” Osteoarthritis and Cartilage 23(3), 405–413 (2015).

114. C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, and D. Zhu, “A large, switchable optical clearing skull window for cerebrovascular imaging,” Theranostics 8(10), 2696–2708 (2018).

115. W. D. Meador, J. Zhou, M. Malinowski, T. Jazwiec, S. Calve, T. A. Timek, and M. K. Rausch, “The effects of a simple optical clearing protocol on the mechanics of collagenous soft tissue,” Journal of Biomechanics 122, 110413 (2021).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+