Human blood plasma SERS analysis using silver nanoparticles for cardiovascular diseases detection
Paper #9010 received 20 Aug 2023; revised manuscript received 8 Nov 2023; accepted for publication 8 Nov 2023; published online 16 Jan 2024.
DOI: 10.18287/JBPE24.10.010301
Abstract
In recent years, the use of Raman and surface enhanced Raman spectroscopy for disease detection has grown. The motives for their increased use have commonly been attributed to their well-known benefits, such as the creation of narrow spectral bands that are characteristic of the molecular components present, and high sensitivity and specificity that they can provide. The aim of this work is the analysis of spectral features of plasma in patients with cardiovascular diseases utilizing surface enhanced Raman spectroscopy to determine the presence or absence of the disease. The investigation revealed spectrum difference between the patient and healthy volunteers’ groups at the observed Raman bands. 146 patients and 67 healthy subjects were analyzed. Classification of the patient group with cardiovascular diseases was made based on the projection on latent structures with 99% accuracy. Stability of the classifier was checked with the implementation of cross-validation and separation of analyzed data into training and test sets. The obtained results demonstrate that the proposed SERS technique is stable and has significant potential in clinical diagnostic applications.
Keywords
Full Text:
PDFReferences
1. R. V. John, T. Devasia, N. Mithun, J. Lukose, and S. Chidangil, “Micro-Raman spectroscopy study of blood samples from myocardial infarction patients,” Lasers in Medical Science 37(9), 3451–3460 (2022).
2. R. Ross, “The pathogenesis of atherosclerosis,” Nature 362(6423), 801–809 (1993).
3. R. A. Hegele, “The genetic basis of atherosclerosis,” International Journal of Clinical and Laboratory Research 27, 2–13 (1997).
4. D. Bennett, R. V. Krishnamurthi, S. Barker-Collo, M. H. Forouzanfar, M. Naghavi, M. Connor, C. M.M. Lawes, A. E. Moran, L. M. Anderson, G. A. Roth, G. A. Mensah, M. Ezzati, C. J. L. Murray, and V. L. Feigin, “The global burden of ischemic stroke: findings of the GBD 2010 study,” Global Heart 9(1), 107–112 (2014).
5. A. E. Moran, M. H. Forouzanfar, Gregory A. Roth, George A. Mensah, M. Ezzati, Christopher, J. L. Murray and M. Naghavi, “Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study,” Circulation 129(14), 1483–1492 (2014).
6. Y. Khristoforova, L. Bratchenko, and I. Bratchenko, “Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review,” International Journal of Molecular Sciences 24(21), 15605 (2023).
7. Y. Zhang, X. Mi, X. Tan, and R. Xiang, “Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy,” Theranostics 9(2), 491(2019).
8. N. Guillot, M. L. de la Chapelle, “The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures,” Journal of Quantitative Spectroscopy and Radiative Transfer 113(18), 2321–2333 (2012).
9. E. Pyrak, J. Krajczewski, A. Kowalik, A. Kudelski, and A. Jaworska, “Surface enhanced Raman spectroscopy for DNA biosensors—How far are we?” Molecules 24(24), 4423 (2019).
10. J. Zhang, Y. Dong, W. Zhu, D. Xie, Y. Zhao, D. Yang, and M. Li, “Ultrasensitive detection of circulating tumor DNA of lung cancer via an enzymatically amplified SERS-based frequency shift assay,” ACS Applied Materials & Interfaces 11(20), 18145–18152 (2019).
11. J. U. Lee, W. H. Kim, H. S. Lee, K. H. Park, and S. J. Sim, “Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface‐enhanced Raman scattering sensor based on plasmonic head‐flocked gold nanopillars,” Small 15(17), 1804968 (2019).
12. Y. Han, L. Qiang, Y. Gao, J. Gao, Q. He, H. Liu, L. Han, and Y. Zhang, “Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer miRNA detection,” Applied Surface Science 541, 148456 (2021).
13. N. Choi, H. Dang, A. Das, M. S. Sim, I. Y. Chung, and J. Choo, “SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells,” Biosensors and Bioelectronics 164, 112326 (2020).
14. C. C. Andrei, A. Moraillon, E. Larquet, M. Potara, S. Astilean, E. Jakab, J. Bouckaert, L. Rosselle, N. Skandrani, R. Boukherroub, F. Ozanam, S. Szunerits and A. C. Gouget-Laemmel, “SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates,” Analytical and Bioanalytical Chemistry 413, 1417–1428 (2021).
15. H. Chen, A. Das, L. Bi, N. Choi, J. Moon, Y. Wu, S. Park, and J. Choo, “Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria,” Nanoscale 12(42), 21560–21570 (2020).
16. M. B. Wabuyele, M. E. Martin, F. Yan, D. L. Stokes, J. Mobley, B. M. Cullum, A. Wintenberg, R. Lenarduzzi, and T. Vo-Dinh, “Portable Raman device for detection of chemical and biological warfare agents,” Proceedings of SPIE 5692, 330−336 (2005).
17. A. Jaworska, S. Fornasaro, V. Sergo, and A. Bonifacio, “Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review,” Biosensors 6(3), 47 (2016).
18. G. Q. Wallace, J. F. Masson, “From single cells to complex tissues in applications of surface-enhanced Raman scattering,” Analyst 145 (22), 7162–7185 (2020).
19. A. Jaworska, K. Malek, and A. Kudelski, “Intracellular pH–Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy–A review,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 251, 119410 (2021).
20. C. Wen, H. Chen, X. Guo, Z. Lin, S. Zhang, X. C. Shen, and H. Liang, “Lysosome-targeted gold nanotheranostics for in situ SERS monitoring pH and multimodal imaging-guided phototherapy,” Langmuir 37(1), 569-577 (2020).
21. E. Critselis, H. L. Heerspink, “Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression,” Nephrology Dialysis Transplantation 31(2), 249−254 (2015).
22. A. Bonifacio, S. D. Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Analytical and Bioanalytical Chemistry 406, 2355–2365 (2014).
23. V. V. Volkov, J. McMaster, J. Aizenberg, and C. C. Perry, “Mapping blood biochemistry by Raman spectroscopy at the cellular level,” Chemical Science 13(1), 133–140 (2022).
24. E. J. Want, I. D. Wilson, H. Gika, G. Theodoridis, R. S. Plumb, J. Shockcor, E. Holmes, and J. K. Nicholson, “Global metabolic profiling procedures for urine using UPLC–MS,” Nature Protocols 5(6), 1005–1018 (2010).
25. F. Selimoğlu, M. E. Ayhan, “Silver nanoparticle decorated graphene-based SERS electrode towards procalcitonin detection,” Vibrational Spectroscopy 126, 103539 (2023).
26. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosensors and Bioelectronics 25(11), 2414–2419 (2010).
27. Z. Hu, B. J. Deibert, and J. Li, “Luminescent metal–organic frameworks for chemical sensing and explosive detection,” Chemical Society Reviews 43(16), 5815–5840 (2014).
28. F. Tian, F. Bonnier, A. Casey, A. E. Shanahan, and H. J. Byrne, “Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape,” Analytical Methods 6(22), 9116–9123 (2014).
29. V. Moisoiu, S. D. Iancu, A. Stefancu, T. Moisoiu, B. Pardini, M. P. Dragomir, N. Crisan, L. Avram, D. Crisan, I. Andras, and D. Fodor, “SERS liquid biopsy: An emerging tool for medical diagnosis,” Colloids and Surfaces B: Biointerfaces 208, 112064 (2021).
30. S. Z. Al-Sammarraie, L. A. Bratchenko, E. N. Typikova, P. A. Lebedev, V. P. Zakharov, and I. A. Bratchenko, “Silver nanoparticles-based substrate for blood serum analysis under 785 nm laser excitation,” Journal of Biomedical Photonics & Engineering 8(1), 010301 (2022).
31. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Applied Spectroscopy 61(11), 1225–1232 (2007).
32. P. Refaeilzadeh, L. Tang, H. Liu, L. Liu, and M. T. Özsu, “Encyclopedia of database systems,” Cross-validation 5, 532–538 (2009).
33. J. Guo, Z. Rong, Y. Li, S. Wang, W. Zhang, and R. Xiao, “Diagnosis of chronic kidney diseases based on surface-enhanced Raman spectroscopy and multivariate analysis,” Laser Physics 28(7), 075603 (2018).
34. A. Bonifacio, S. D. Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, and V. Sergo, “Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study,” Analytical and Bioanalytical Chemistry 406, 2355–2365 (2014).
35. X. Huang, B. Liu, S. Guo, W. Guo, K. Liao, G. Hu, W. Shi, M. Kuss, M. J. Duryee, D. R. Anderson, Y. Lu, and B. Duan, “SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis,” Bioengineering & Translational Medicine 8(2), e10420 (2023).
36. H. Yang, C. Zhao, R. Li, C. Shen, X. Cai, L Sun, C. Luo, and Y. Yin, “Noninvasive and prospective diagnosis of coronary heart disease with urine using surface-enhanced Raman spectroscopy,” Analyst 143(10), 2235–2242 (2018).
37. S. Kucheryavskiy, “mdatools — R package for chemometrics,” Chemometrics and Intelligent Laboratory Systems 198, 103937 (2020).
38. H. J. Koster, A. Guillen-Perez, J. S. Gomez-Diaz, M. Navas-Moreno, A. C. Birkeland, and R. P. Carney, “Fused Raman spectroscopic analysis of blood and saliva delivers high accuracy for head and neck cancer diagnostics,” Scientific Reports 12(1), 18464 (2022).
39. F. S. Nahm, “Receiver operating characteristic curve: overview and practical use for clinicians,” Korean Journal of Anesthesiology 75(1), 25–36 (2022).
40. Z. Wang, Y. Liu, W. Lu, Y. V. Fu, and Z. Zhou, “Blood identification at the single-cell level based on a combination of laser tweezers Raman spectroscopy and machine learning,” Biomedical Optics Express 12(12), 7568–7581 (2021).
41. C. Polonschii, M. Potara, M. Iancu, S. David, R. M. Banciu, A. Vasilescu, and S. Astilean, “Progress in the Optical Sensing of Cardiac Biomarkers,” Biosensors 13(6), 632 (2023).
42. L. A. Bratchenko, S. Z. Al-Sammarraie, E. N. Tupikova, D. Y. Konovalova, P. A. Lebedev, V. P. Zakharov, and I. A. Bratchenko, “Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning,” Biomedical Optics Express 13(9), 4926–4938 (2022).
43. I. A. Bratchenko, L. A. Bratchenko, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “Classification of skin cancer using convolutional neural networks analysis of Raman spectra,” Computer Methods and Programs in Biomedicine 219, 106755 (2022).
44. Z. Cheng, R. Wang, Y. Xing, L. Zhao, J. Choo, and F. Yu, “SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers,” Analyst 144(22), 6533–6540 (2019).
45. H. Chon, S. Lee, S. Y. Yoon, E. K. Lee, S. I. Chang, and J. Choo, “SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction,” Chemical Communications 50(9), 1058–1060 (2014).
46. C. Hu, L. Ma, M. Guan, F. Mi, F. Peng, C. Guo, S. Sun, X. Wang, T. Liu, and J. Li, “SERS-based magnetic immunoassay for simultaneous detection of cTnI and H-FABP using core–shell nanotags,” Analytical Methods 12(45), 5442–5449 (2020).
47. X. Fu, Y. Wang, Y. Liu, H. Liu, L. Fu, J. Wen, J. Li, P. Wei, and L. Chen, “A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I,” Analyst 144(5), 1582–1589 (2019).
48. J. H. Lin, RA Patil, R. S. Devan, Z. A. Liu, Y. P. Wang, C. H. Ho, Y. Liou, and Y. R. Ma, “Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons and metal-semiconductor Zn/ZnO nanospheres,” Scientific Reports 4(1), 6967(2014).
49. S. Feng, W. Wang, I. T. Tai, G. Chen, R. Chen, and H. Zeng, “Label-free surface-enhanced Raman spectroscopy for detection of colorectal cancer and precursor lesions using blood plasma,” Biomedical Optics Express 6(9), 3494–3502 (2015).
50. M. Tahira, H. Nawaz, M. I. Majeed, N. Rashid, S. Tabbasum, M. Abubakar, S. Ahmad, S. Akbar, S. Bashir, M. Kashif, S. Ali, and H. Hyat, “Surface-enhanced Raman spectroscopy analysis of serum samples of typhoid patients of different stages,” Photodiagnosis and Photodynamic Therapy 34, 102329 (2021).
51. L. A. Bratchenko, I. A. Bratchenko, A. A. Lykina, M. V. Komarova, D. N. Artemyev, O. O. Myakinin, A. A. Moryatov, I. L. Davydkin, S. V. Kozlov, and V. P. Zakharov, “Comparative study of multivariative analysis methods of blood Raman spectra classification,” Journal of Raman Spectroscopy 51(2), 279–292 (2020).
52. Y. A. Khristoforova, L. A. Bratchenko, M. A. Skuratova, E. A. Lebedeva, P. A. Lebedev, and I. A. Bratchenko, “Raman spectroscopy in chronic heart failure diagnosis based on human skin analysis,” Journal of Biophotonics 16(7), e202300016 (2023).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+