Temperature-Dependent Luminescence Quenching in New Water-Soluble Europium Complexes in Water and Heavy Water
Paper #9064 received 30 Jan 2024; revised manuscript received 28 May 2024; accepted for publication 29 May 2024; published online 17 Aug 2024
DOI: 10.18287/JBPE24.10.030301
Abstract
Keywords
References
1. J. Fang, D. Ma, “Efficient red organic light-emitting devices based on a europium complex,” Applied Physics Letters 83(19), 4041–4043 (2003).
2. S. Zhang, G.A. Turnbull, and I. D. W. Samuel, “Highly efficient solution-processable europium-complex based organic light-emitting diodes,” Organic Electronics 13(12), 3091–3096 (2012).
3. A. Sukegawa, H. Sekiguchi, R. Matsuzaki, K. Yamane, H. Okada, K. Kishino, and A. Wakahara, “Self-organized Eu-doped GaN nanocolumn light-emitting diode grown by RF-molecular beam epitaxy,” Physica Status Solidi (A) 216(1), 1800501 (2018).
4. V. V. Puthiyaveetil, S. C. Kottianmadathil, J. S. Valappil, and N. K. Meerasahib, “The Role of Sm3+ Energy Transfer on White Emission of La1.98Dy0.02MgTiO6 Double Perovskite Nano-Phosphors for Endoscopy and Laparoscopy LEDs,” Journal of Biomedical Photonics & Engineering 9(3), 030307 (2023).
5. A. V. Belikov, A. D. Tavalinskaya, S. N. Smirnov, and A. N. Sergeev, “Application of Yb,Er:Glass laser radiation for active drug delivery at the treatment of onychomycosis,” Journal of Biomedical Photonics & Engineering 5(1), 010305 (2019).
6. L. E. MacKenzie, R. Pal, “Circularly polarized lanthanide luminescence for advanced security inks,” Nature Reviews Chemistry 5, 109−124 (2021).
7. Y. Zheng, X. Zhu, “Recent progress in emerging near-infrared emitting materials for light-emitting diode applications,” Organic Materials 02(04), 253−281 (2020).
8. C. Hu, Y.-L. Lu, Y.-Z. Li, Y.-P. Yang, M. Liu, J.-M. Liu, Y.-Y. Li, Q.-H. Jin, and Y.-Y. Niu, “Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: syntheses, structures, photocatalysis and THz spectra,” Environmental Research 206, 112267 (2022).
9. S. Krause, M. B. Liisberg, S. Lahtinen, T. Soukka, and T. Vosch, “Lanthanide-doped nanoparticles for stimulated emission depletion nanoscopy,” ACS Applied Nano Materials 2(9), 5817−5823 (2019).
10. J. Mendy, A.T. Bui, A. Roux, J.-C. Mulatier, D. Curton, A. Duperray, A. Grichine, Y. Guyot, S. Brasselet, F. Riobé, C. Andraud, D. Le Guennic, V. Patinec, R. Tripier, M. Beyler, and O. Maury, “Cationic biphotonic lanthanide luminescent bioprobes based on functionalized cross-bridged cyclam macrocycles,” ChemPhysChem 21(10), 1036−1043 (2020).
11. P. J. Cywinski, T. Hammann, D. Hühn, W. J. Parak, N. Hildebrandt, and H.-G. Löhmannsröben, “Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing,” Journal of Biomedical Optics 19(10), 101506 (2014).
12. A. D. Mironova, Yu. V. Kargina, O. S. Pavlova, A. M. Perepukhov, I. O. Sobina, and V. Yu. Timoshenko, “Porous Silicon Nanoparticles with Rare Earth as Potential Contrast Agents for MRI and Luminescent Probes for Bioimaging,” Journal of Biomedical Photonics & Engineering 8(2), 020304 (2022).
13. G. Bao, “Lanthanide complexes for drug delivery and therapeutics,” Journal of Luminescence 228, 117622 (2020).
14. D. Hreniak, M. Jasiorski, K. Maruszewski, L. Kepinski, L. Krajczyk, J. Misiewicz, and W. Strek, “Nature and optical behaviour of heavily europium-doped silica glasses obtained by the sol–gel method,” Journal of Non-Crystalline Solids 298(2−3), 146–152 (2002).
15. M. Elisa, B. A. Sava, I. C. Vasiliu, R. C. C. Monteiro, J. P. Veiga, L. Ghervase, and R. Iordanescu, “Optical and structural characterization of samarium and europium-doped phosphate glasses,” Journal of Non-Crystalline Solids 369, 55–60 (2013).
16. J. Anjaiah, C. Laxmikanth, and N. Veeraiah, “Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses,” Physica B: Condensed Matter 454, 148–156 (2014).
17. B. N. K. Reddy, B. D. R. Raju, K. Thyagarajan, R. Ramanaiah, Y.-D. Jho, and B. S. Reddy, “Optical characterization of Eu3+ ion doped alkali oxide modified borosilicate glasses for red laser and display device applications,” Ceramics International 43(12), 8886−8892 (2017).
18. J.-C. G. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chemical Reviews 110(5), 2729–2755 (2010).
19. J.-C. G. Bünzli, “Lanthanide light for biology and medical diagnosis,” Journal of Luminescence 170, 866–878 (2016).
20. B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner, and N. Sabbatini, “Antenna effect in luminescent lanthanide cryptates: a photophysical study,” Photochemistry and Photobiology 52(2), 299–306 (1990).
21. E. W. J. L. Oomen, A. M. A. van Dongen, “Europium(III) in oxide glasses: Dependence of the emission spectrum upon glass composition,” Journal of Non-Crystalline Solids 111(2−3), 205–213 (1989).
22. G. A. Crosby, R. E. Whan, and R. M. Alire, “Intramolecular energy transfer in rare earth chelates. Role of the triplet state,” The Journal of Chemical Physics 34(3), 743−748 (1961).
23. G. A. Crosby, R. E. Whan, and J. J. Freeman, “Spectroscopic studies of rare earth chelates,” The Journal of Physical Chemistry 66(12), 2493–2499 (1962).
24. R. E. Whan, G. A. Crosby, “Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates,” Journal of Molecular Spectroscopy 8(1−6), 315−327 (1962).
25. S. Miyazaki, K. Miyata, H. Sakamoto, F. Suzue, Y. Kitagawa, and Y. Hasegawa, “Coexistence of Förster and Dexter Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes through Phosphine-Oxide Bridges,” Preprint ChemRxiv (2020).
26. M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” Journal of Luminescence 75(2), 149–169 (1997).
27. N. E. Borisova, A. V. Kharcheva, S. V. Patsaeva, L. A. Korotkov, S. Bakaev, M. D. Reshetova, K. A. Lyssenko, E. V. Belova, and B. F. Myasoedov, “Hard-and-soft phosphinoxide receptors for f-element binding: structure and photophysical properties of europium(III) complexes,” Dalton Transactions 46(7), 2238−2248 (2017).
28. X. Fan, S. Freslon, C. Daiguebonne, L. Le Polles, G. Calvez, K. Bernott, X. Yi, G. Huang, and O. Guillou, “A family of lanthanide-based coordination polymers with boronic acid as ligand,” Inorganic Chemistry 54(11), 5534−5546 (2015).
29. J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angewandte Chemie International Edition 44(45), 7439–7442 (2005).
30. J.-M. Yang, H. Yang, and L. Lin, “Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells,” ASC Nano 5(6), 5067−5071 (2011).
31. M. Hossain, R. Mandal, Z. Amin, H. S. Mondal, and E. Rahaman, “Chloroform infiltrate temperature sensor using asymmetric circular dual-core photonic crystal fiber,” Journal of Biomedical Photonics & Engineering 4(3), 030302 (2018).
32. S. Uchiyama, A. P. de Silva, and K. Iwai, “Luminescent molecular thermometers,” Journal of Chemical Education 83(5), 720−727 (2006).
33. A. Toseland, S. J. Daines, J. R. Clark, A. Kirkham, J. Strauss, C. Uhlig, T. M. Lenton, K. Valentin, G. A. Pearson, V. Moulton, and T. Mock, “The impact of temperature on marine phytoplankton resource allocation and metabolism,” Nature Climate Change 3, 979−984 (2013).
34. M. P. W. Schneider, L. A. Pyle, K. L. Clark, W. C. Hockaday, C. A. Masiello, and M. W. I. Schmidt, “Toward a “molecular thermometer” to estimate the charring temperature of wildland charcoals derived from different biomass sources,” Environmental Science & Technology 47(20), 11490–11495 (2013).
35. I. E. Kolesnikov, M. A. Kurochkin, I. N. Meshkov, R. A. Akasov, A. A. Kalinichev, E. Y. Kolesnikov, Y. G. Gorbunova, and E. Lähderanta, “Water-soluble multimode fluorescent thermometers based on porphyrins photosensitizers,” Materials & Design 203, 109613 (2021).
36. D. Pugh-Thomas, B. M. Walsh, and M. C. Gupta, “CdSe(ZnS) nanocomposite luminescent high temperature sensor,” Nanotechnology 22(18), 185503 (2011).
37. A. Kaczmarek, Y. Maegawa, A. Abalymov, A. G. Skirtach, S. Inagaki, and P. Van Der Voort, “Lanthanide-grafted bipyridine periodic mesoporous organosilicas (BPy-PMOs) for physiological range and wide temperature range luminescence thermometry,” ACS Applied Materials & Interfaces 12(11), 13540−13550 (2020).
38. D. V. Lapaev, V. G. Nikiforov, V. S. Lobkov, A. A. Knyazev, and Y. G. Galyametdinov, “Reusable temperature-sensitive luminescent material based on vitrified film of europium(III) β-diketonate complex,” Optical Materials 75, 787−795 (2018).
39. D. V. Lapaev, V. G. Nikiforov, V. S. Lobkov, A. A. Knyazev, R. M. Ziyatdinova, and Y. G. Galyametdinov, “A vitrified film of an anisometric europium(III) β-diketonate comples with a low melting point as a reusable luminescent temperature probe with excellent sensitivity in the range of 270-370 K,” Journal of Materials Chemistry C 8(18), 6273−6280 (2020).
40. J. Yuasa, R. Mukai, Y. Hasegawa, and T. Kawai, “Ratiometric luminescence thermometry based on crystal-field alternation at the extremely narrow 5D0→7F2 transition band of europium(III),” Chemical Communications 50(59), 7937−7940 (2014).
41. S. M. Bruno, D. Ananias, F. A. A. Paz, M. Pillinger, A. A. Valente, L. D. Carlos, and I. S. Gonçalves, “Crystal structure and temperature-dependent luminescence of a heterotetranuclear sodium–europium(iii) β-diketonate complex,” Dalton Transactions 44(2), 488–492 (2015).
42. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New Journal of Chemistry 35(6), 1177−1183 (2011).
43. X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, and G. Qian, “A Highly Sensitive Mixed Lanthanide Metal–Organic Framework Self-Calibrated Luminescent Thermometer,” Journal of the American Chemical Society 135(41), 15559–15564 (2013).
44. V. Khudoleeva, L. Tcelykh, A. Kovalenko, A. Kalyakina, A. Goloveshkin, L. Lepnev, and V. Utochnikova, “Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: Does sensitivity depend on the ligand?” Journal of Luminescence 201, 500–508 (2018).
45. C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Advanced Optical Materials 7(5), 1801239 (2019).
46. F. V. Bussche, A. M. Kaczmarek, V. V. Speybroeck, P. Van Der Voort, and C. V. Stevens, “Overview of N-rich antennae investigated in lanthanide-based temperature sensing,” Chemistry – A European Journal 27(25), 7214-7230 (2021).
47. O. K. Farat, A. V. Kharcheva, V. A. Ioutsi, N. E. Borisova, M. D. Reshetova, and S. V. Patsaeva, “Europium complex of 2,2'-bipyridine-6,6'-dicarboxylic acid bis[di(phosphonomethyl)amide] as a new efficient water-soluble luminescent dye,” Mendeleev Communications 29(3), 282–284 (2019).
48. A. V. Kharcheva, Z. A. Charyshnikova, N. E. Borisova, Ts. B. Sumyanova, O. K. Farat, D. A. Kharitonov, and S. V. Patsaeva, “New luminescent pH-responsive europium complex for multimodal sensing in extremely wide pH range,” Journal of Luminescence 243, 118678 (2022).
49. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8(8), 1535−1550 (2013).
50. P. A. Tanner, “Some misconceptions concerning the electronic spectra of tri-positive europium and cerium,” Chemical Society Reviews 42(12), 5090−5101 (2013).
51. W. D. Horrocks, D. R. Sudnick, “Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules,” Journal of the American Chemical Society 101(2), 334−3430 (1979).
52. R. M. Supkowski, W. D. Horrocks, “On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes,” Inorganica Chimica Acta 340, 44–48 (2002).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+