Recognition of Drusen Subtypes on OCT Data for the Diagnosis of Age-Related Macular Degeneration
Paper #9097 received 8 Apr 2024; revised manuscript received 9 Sep 2024; accepted for publication 10 Sep 2024; published online 30 Sep 2024.
DOI: 10.18287/JBPE24.10.030307
Abstract
The aim of this work is to identify drusen subtypes on OCT images for the diagnosis of age-related macular degeneration. In this paper we propose a technology of drusen extraction on OCT-images and their classification. The relevance of the problem is determined by a large number of age-related macular degeneration diseases, which can be diagnosed with the help of timely detection of drusen, as well as the possibility to speed up the time of work of a specialist. The method is based on the segmentation of drusen on the original images and their classification on the reflexivity features. The conducted study allowed achieving a classification accuracy of 98%.
Keywords
Full Text:
PDFReferences
1. N. Y. Ilyasova, N. S. Demin, A. S. Shirokanev, A. V. Kupriyanov, and E. A. Zamytsky, “Method for selection macular edema region using optical coherence tomography data,” Computer Optics 44(2), 250−258 (2020). [in Russian]
2. A. Z. Fursova, O. G. Gusarevich, M. S. Tarasov, M. A. Vasilyeva, N. V. Chubar, and N. V. Litvinova, “Age- macular degeneration and glaucoma. Epidemiological and clinic-pathogenetic aspects,” Siberian Scientific Medical Journal 38(5), 83−91 (2018). [in Russian]
3. “World Population Prospects 2022: Summary of results,” United Nations, New York (2022). ISBN: 978-92-1-148373-4.
4. E. V. Boyko, A. V. Doga, and V. V. Egorov, “Druse structure as a biomarker of AMD progression,” New in Ophthalmology 4, (2016). [in Russian]
5. L. de Sisternes, G. Jonna, M. A. Greven, T. Leng, and D. Rubin, “Individual drusen segmentation and repeatability and reproducibility of their automated quantification in optical coherence tomography images,” Translational Vision Science & Technology 6(1), 12 (2017).
6. M. Veerappan, A.-K. M. El-Hage-Sleiman, V. Tai, S. J. Chiu, K. P. Winter, S. S. Stinnett, T. S. Hwang, G. B. Hubbard, M. Michelson, R. Gunther, W. T. Wong, E. Y. Chew, C. A. Toth, C. A. Toth, W. Wong, T. Hwang, G. B. Hubbard, S. Srivastava, M. McCall, K. Winter, N. Sarin, K. Hall, P. McCollum, L. Curtis, S. Schuman, S. J. Chiu, S. Farsiu, V. Tai, M. Sevilla, C. Harrington, R. Gunther, D. Tran-Viet, F. Folgar, E. Yuan, T. Clemons, M. Harrington, and E. Chew, “Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration,” Ophthalmology 123(12), 2554–2570 (2016).
7. A. A. Khanifar, A. F. Koreishi, J. A. Izatt, and C. A. Toth, “Drusen Ultrastructure Imaging with Spectral Domain Optical Coherence Tomography in Age-related Macular Degeneration,” Ophthalmology 115(11), 1883−1890e1 (2008).
8. J. N. Leuschen, S. G. Schuman, K. P. Winter, M. McCall, W. Wong, E. Chew, T. Hwang, N. Sarin, T. Clemons, M. Harrington, and C. Toth, “Spectral-Domain Optical Coherence Tomography Characteristics of Intermediate Age-related Macular Degeneration,” Ophthalmology 120(1), 140−150 (2013).
9. N. Y. Ilyasova, A. V. Kupriyanov, and A. G. Khramov, Information technologies of image analysis in the tasks of medical diagnostics, A. S. Bugaev (Ed.), Radio and Communication, Moscow (2012). ISBN: 5-89776-014-4. [in Russian]
10. Q. Chen, T. Leng, L. Zheng, L. Kutzcher, J. Ma, L. Sisternes, and D. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Medical Image Analysis 17(8), 1058−1072 (2013).
11. S. Farsiu, S. J. Chiu, J. A. Izatt, and C. A. Toth, “Fast detection and segmentation of drusen in retinal optical coherence tomography images,” Proceedings of SPIE 6844, 68440 (2008).
12. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images,” Investigative Ophthalmology & Visual Science 53(1), 53−61 (2012).
13. S. J. Chiu, X. T. Li, P. Nicholas, C. Toth, J. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Optics Express 18(18), 19413−19428 (2010).
14. R. Asgari, S. Waldstein, F. Schlanitz, M. Baratsits, U. Schmidt-Erfurth, and H. Bogunović, “U-Net with Spatial Pyramid Pooling for Drusen Segmentation in Optical Coherence Tomography,” in Ophthalmic Medical Image Analysis, H. Fu, M. K. Garvin, T. MacGillivray, Y. Xu, and Y. Zheng (Eds.), Springer International Publishing, 11855, 77–85 (2019).
15. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi (Eds.), Springer International Publishing, 9351, 234–241 (2015).
16. Z. Mishra, A. Ganegoda, J. Selicha, Z. Wang, S. R. Sadda, and Z. Hu, “Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information,” Scientific Reports 10, 9541 (2020).
17. J. A. Sousa, A. Paiva, A. Silva, J. D. Almeida, G. Braz Junior, J. O. Diniz, W. K. Figueredo, and M. Gattass, “Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed,” PLoS ONE 16(5), e0251591 (2021).
18. N. S. Demin, N. Y. Ilyasova, R. A. Paringer, and D. V. Kirsh, “Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images,” Computer Optics 47(5), 824−831 (2023).
19. M. Wang, W. Zhu, F. Shi, J. Su, H. Chen, K. Yu, Y. Zhou, Y. Peng, Z. Chen, and X. Chen, “MsTGANet: Automatic Drusen Segmentation From Retinal OCT Images,” IEEE Transactions On Medical Imaging 41(2), 394–406 (2022).
20. A. Zagitov, E. Chebotareva, A. Toschev, and E. Magid, “Comparative analysis of neural network models performance on low-power devices for a real-time object detection task,” Computer Optics 48(2), 242−252 (2024).
21. A. A. Mikhaylichenko, Y. M. Demyanenko, “Using squeeze-and-excitation blocks to improve an accuracy of automatically grading knee osteoarthritis severity using convolutional neural networks,” Computer Optics 46(2), 317−325 (2022).
22. Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. De Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Medical Image Analysis 17(8), 1058–1072 (2013).
23. M. V. Sherer, D. Lin, S. Elguindi, S. Duke, L.-T. Tan, J. Cacicedo, M. Dahele, and E. F. Gillespie, “Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review,” Radiotherapy and Oncology 160, 185–191 (2021).
24. Q. Gu, L. Zhu, and Z. Cai, “Evaluation Measures of the Classification Performance of Imbalanced Data Sets,” in Computational Intelligence and Intelligent Systems, Z. Cai, Z. Li, Z. Kang, and Y. Liu (Eds.), Springer, Berlin, Heidelberg, 51, 461–471 (2009).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+