Laser-Stimulated Release of Methylene Blue from Porous Silicon Nanocontainers

Alexandr А. Bubnov (Login required)
National Research Nuclear University MEPhI Moscow Engineering Physics Institute Moscow, Russian Federation

Gleb N. Abrashitov
Lomonosov Moscow State University, Russian Federation

Victor Yu. Timoshenko
National Research Nuclear University MEPhI Moscow Engineering Physics Institute Moscow, Russian Federation
Lomonosov Moscow State University, Russian Federation
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Russian Federation


Paper #9129 received 12 Jul 2024; revised manuscript received 4 Sep 2024; accepted for publication 24 Sep 2024; published online 25 Oct 2024.

DOI: 10.18287/JBPE24.10.040305

Abstract

Aqueous suspensions of nanocontainers consisting of porous silicon (PSi) nanoparticles with Methylene blue (MB) loading were investigated by means of the optical spectroscopy and infrared thermometry under laser irradiation. The photothermal conversion efficiency and kinetics of the MB release from those nanocontainers based on PSi without additional oxidation and after thermal oxidation (ox-PSi) were analyzed to establish an influence of the oxidation of PSi on MB release. The optical spectroscopical study of the loaded nanocontainers showed a strong absorption band of MB at 600−700 nm, while the absorption bands of PSi and, especially, ox-PSi were relatively weak in this spectral region, indicating a high degree of the MB loading for both types of NPs. The MB release from nanocontainers in an aqueous medium was monitored by measuring the MB photoluminescence in the spectral region of 700−800 nm when excited by a continuous wave laser at a wavelength of 660 nm. The MB release from the nanocontainer based on PSi NPs was found to be significantly promoted by nanosecond laser irradiation at 532 nm because of the laser induced heating of PSi NPs. To assess possible applications of the MB release and photoheating, in vitro experiments were carried out with unicellular organisms of Paramecium caudatum, and their results confirmed the effect of spatially localized photoheating of MB-loaded PSi NPs under pulsed laser irradiation, which enhanced the MB release. The obtained results indicate new possibilities for the controlled drug release using PSi NPs and may be useful for biomedical applications as antibacterial treatment and combination therapy of cancer.

Keywords

porous silicon; nanoparticles; nanocontainers; Methylene blue; laser irradiation; photoluminescence; photoheating

Full Text:

PDF

References


1. O. Afzal, A. S. A. Altamimi, M. S. Nadeem, S. I. Alzarea, W. H. Almalki, A. Tariq, B. Mubeen, B. N. Murtaza, S. Iftikhar, N. Riaz, and I. Kazmi, “Nanoparticles in Drug Delivery: From History to Therapeutic Applications,” Nanomaterials 12(24), 4494 (2022).

2. A. Yusuf, A. R. Z. Almotairy, H. Henidi, O. Y. Alshehri, and M. S. Aldughaim, “Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems,” Polymers 15(7), 1596 (2023).

3. J.-H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nature Mater 8(4), 331–336 (2009).

4. S. M.Haidary, E. P.Córcoles, and N. K. Ali, “Nanoporous Silicon as Drug Delivery Systems for Cancer Therapies,” Journal of Nanomaterials 2012(1), 830503 (2012).

5. J. Salonen, “Drug delivery with porous silicon,” in Handbook of Porous Silicon, L. Canham (Ed.), 2 ed., Springer, Cham, 1377–1390 (2018). Online ISBN: 978-3-319-71381-6.

6. V. Yu. Timoshenko, “Porous silicon in photodynamic and photothermal therapy,” in Handbook of Porous Silicon, L. Canham (Ed.), 2 ed., Springer, Cham, 1461−1469 (2018).

7. K. Tamarov, W. Xu, L. Osminkina, S. Zinovyev, P. Soininen, A. Kudryavtsev, M. Gongalsky, A. Gaydarova, A. Närvänen, V. Timoshenko, and V.-P. Lehto, “Temperature responsive porous silicon nanoparticles for cancer therapy – spatiotemporal triggering through infrared and radiofrequency electromagnetic heating,” Journal of Controlled Release 241, 220−228 (2016).

8. T. Cwalinski, W. Polom, L. Marano, G. Roviello, A. D’Angelo, N. Cwalina, M. Matuszewski, F. Roviello, J. Jaskiewicz, and K. Polom, “Methylene blue-current knowledge, fluorescent properties, and its future use,” Journal of Clinical Medicine 9(11), 3538 (2020).

9. L. Abraham, A. Rai, K. Burde, and V. Naikmasur, “Methylene blue as a diagnostic aid in the early detection of potentially malignant and malignant lesions of oral Mucosa,” Ethiopian Journal of Health Sciences 26(3), 201−208 (2016).

10. M. Bužga, E. Machytka, E. Dvořáčková, Z. Švagera, D. Stejskal, J. Máca, and J. Král, “Methylene blue: a controversial diagnostic acid and medication?,” Toxicology Research 11(5), 711−717 (2022).

11. S. Li, Y. Cui, M. Wen, and G. Ji, “Toxic effects of Methylene blue on the growth, reproduction and physiology of Daphnia magna,” Toxics 11(7), 594 (2023).

12. A. S. Altowyan, A. Toghan, H. A. Ahmed, R. A. Pashameah, E. A. Mwafy, S. H. Alrefaee, and A. M. Mostafa, “Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method,” Radiation Physics and Chemistry 198, 110268 (2022).

13. M. Chen, C. T. Jafvert, “Application of cross-linked stearic acid nanoparticles with dialysis membranes for methylene blue recovery,” Separation and Purification Technology 204, 21−29 (2018).

14. W. Tang, H. Xu, R. Kopelman and M. A. Philbert, “Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms,” Photochemistry and Photobiology 81(2), 242–249 (2005).

15. X. Xu, H. Mao, Y. Wu, S. Liu, J. Liu, Q. Li, M. Yang, J. Zhu, S. Zou, and F. Du, “Fabrication of methylene blue-loaded ovalbumin/polypyrrole nanoparticles for enhanced phototherapy-triggered antitumour immune activation,” Journal of Nanobiotechnology 20, 297 (2022).

16. M. A. Konoplyannikov, A. S. Eremina, Yu. V. Kargina, I. M. Le-Deygen, A. Yu. Kharin, T. Yu. Bazylenko, G. M. Yusubalieva, V. A. Revkova, O. N. Matchuk, I. A. Zamulaeva, M. R. Abramova, S. L. Kotova, P. S. Timashev, V. P. Baklaushev, and V. Yu. Timoshenko, “Mesoporous silicon nanoparticles loaded with salinomycin for cancer therapy applications,” Microporous and Mesoporous Materials 328, 111473 (2021).

17. A. S. Eremina, Yu. V. Kargina, A. Yu. Kharin, D. I. Petukhov, and V. Yu. Timoshenko, “Mesoporous silicon nanoparticles covered with PEG molecules by mechanical grinding in aqueous suspensions,” Microporous and Mesoporous Materials 331, 111641 (2022).

18. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9(7), 676–682 (2012).

19. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals”, Physica Status Solidi (B) 215(2), 871–932 (1999).

20. É. G. A. De Miranda, V. H. Toledo, C. G. Dos Santos, F. Costa, M. Diaz-Lopez, T. B. De Queiroz, O. R. Nascimento, and I. L. Nantes, “Organic matrix-entrapped methylene blue as a photochemical reactor applied in chemical synthesis and nanotechnology,” Journal of Photochemistry and Photobiology A: Chemistry 444, 115015 (2023).

21. H. M. Dao, C. Whang, V. K. Shankar, Y. Wang, I. A. Khan, L. A. Walker, I. Husain, S. I. Khan, S. N. Murthy and S. Jo, “Methylene blue as a far-red light-mediated photocleavable multifunctional ligand,” Chemical Communications 56(11), 1673−1676 (2020).

22. F. Pahang, P. Parvin, H. Ghafoori-Fard, A. Bavali, and A. Moafi, “Fluorescence properties of methylene blue molecules coupled with metal oxide nanoparticles,” OSA Continuum 3(3), 688−697 (2020).

23. A. A. Bubnov, V. S. Belov, Y. V. Kargina, G. V. Tikhonowski, A. A. Popov, A. Yu. Kharin, M. V. Shestakov, A. M. Perepukhov, A. V. Syuy, V. S. Volkov, V. V. Khovaylo, S. M. Klimentov, A. V. Kabashin, and V. Yu. Timoshenko, “Laser-Ablative Synthesis of Silicon–Iron Composite Nanoparticles for Theranostic Applications,” Nanomaterials 13(15), 2256 (2023).

24. S. Krenek, T. U. Berendonk, and T. Petzoldt, “Thermal performance curves of Paramecium caudatum: A model selection approach,” European Journal of Protistology 47(2), 124–137 (2011).

25. G. A. Gruzdev, O. V. Karpukhina, V. G. Yakunin, A. N. Inozemtsev, V. P. Savinov, V. Yu. Timoshenko, and A. A. Kamensky, “Effect of Low-Temperature Atmospheric Pressure Plasma on Paramecium caudatum Cell Culture,” Moscow University Biological Sciences Bulletin 76(4), 244–248 (2021).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+