Therapeutic and Diagnostic Algorithm for Patients with Obstructive Jaundice Based on the Estimation of the Optical Characteristics of the Liver and Bile

Elena V. Potapova orcid (Login required)
Orel State University, Russian Federation

Ksenia Y. Kandurova orcid
Orel State University, Russian Federation

Vadim N. Prizemin orcid
Orel State University, Russian Federation

Dmitry S. Sumin orcid
Orel Regional Clinical Hospital, Russian Federation

Andrian V. Mamoshin orcid
Orel State University, Russian Federation
Orel Regional Clinical Hospital, Russian Federation


Paper #9149 received 8 Aug 2024; revised manuscript received 18 Sep 2024; accepted for publication 19 Sep 2024; published online 14 Oct 2024.

DOI: 10.18287/JBPE24.10.040304

Abstract

Timely detection and prognosis of liver failure play an important role in improving treatment outcomes for patients with biliary obstruction. The study describes the use of optical biopsy methods to determine the functional state of the liver in patients with obstructive jaundice syndrome during and after antegrade biliary decompression. Fluorescence spectroscopy method allowed us to detect the patients suffering from severe liver failure during biliary drainage with high sensitivity, specificity, and accuracy (0.88, 0.98, and 0.96) to provide emergency treatment by extracorporeal detoxification methods. Raman spectroscopy method was proposed to be used to obtain additional diagnostic information on the recovery of excretory function of the liver to determine the possibility of transition to the next stage of treatment of the underlying disease. The scheme of treatment and diagnostic algorithm is proposed, which shows the position of optical diagnostic methods in the standard treatment protocol of patients with obstructive jaundice of different etiology.

Keywords

liver; obstructive jaundice; liver failure; decompression of bile ducts; optical biopsy; fluorescence spectroscopy; Raman spectroscopy; bile

Full Text:

PDF

References


1. J.-J. Liu, Y.-M. Sun, Y. Xu, H.-W. Mei, W. Guo, and Z.-L. Li, “Pathophysiological consequences and treatment strategy of obstructive jaundice,” World Journal of Gastrointestinal Surgery 15(7), 1262–1276 (2023).

2. S.-Y. Cai, X. Ouyang, Y. Chen, C. J. Soroka, J. Wang, A. Mennone, Y. Wang, W. Z. Mehal, D. Jain, and J. L. Boyer, “Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response,” JCI Insight 2(5), (2017).

3. A. Filipović, D. Mašulović, K. Gopčević, D. Galun, A. Igić, D. Bulatović, M. Zakošek, and T. Filipović, “Effect of Percutaneous Biliary Drainage on Enzyme Activity of Serum Matrix Metalloproteinase-9 in Patients with Malignant Hilar Obstructive Hyperbilirubinemia,” Medicina 59(2), 336 (2023).

4. E. T. Pavlidis, T. E. Pavlidis, “Pathophysiological consequences of obstructive jaundice and perioperative management,” Hepatobiliary & Pancreatic Diseases International 17(1), 17–21 (2018).

5. N. A. Van Der Gaag, J. J. Kloek, S. M. M. De Castro, O. R. C. Busch, T. M. Van Gulik, and D. J. Gouma, “Preoperative Biliary Drainage in Patients with Obstructive Jaundice: History and Current Status,” Journal of Gastrointestinal Surgery 13(4), 814–820 (2009).

6. H. Moole, M. Bechtold, and S. R. Puli, “Efficacy of preoperative biliary drainage in malignant obstructive jaundice: a meta-analysis and systematic review,” World Journal of Surgical Oncology 14(1), 182 (2016).

7. P. Watanapa, “Recovery patterns of liver function after complete and partial surgical biliary decompression,” The American Journal of Surgery 171(2), 230–234 (1996).

8. O. M. Van Delden, J. S. Laméris, “Percutaneous drainage and stenting for palliation of malignant bile duct obstruction,” European Radiology 18(3), 448–456 (2008).

9. C. Iacono, A. Ruzzenente, T. Campagnaro, L. Bortolasi, A. Valdegamberi, and A. Guglielmi, “Role of Preoperative Biliary Drainage in Jaundiced Patients Who Are Candidates for Pancreatoduodenectomy or Hepatic Resection: Highlights and Drawbacks,” Annals of Surgery 257(2), 191–204 (2013).

10. S. Kumar, S. Masood, U. Srivastava, S. M. Madhavan, S. Chauhan, and A. Pandey, “Factors predicting recovery of liver function after percutaneous drainage in malignant biliary obstruction: the role of hospital-acquired biliary sepsis,” Clinical and Experimental Hepatology 6(4), 295–303 (2020).

11. J. Sha, Y. Dong, and H. Niu, “A prospective study of risk factors for in-hospital mortality in patients with malignant obstructive jaundice undergoing percutaneous biliary drainage,” Medicine 98(15), e15131 (2019).

12. F. Scheufele, L. Aichinger, C. Jäger, I. E. Demir, S. Schorn, E. Demir, M. Sargut, H. Friess, and G. O. Ceyhan, “INR and not bilirubin levels predict postoperative morbidity in patients with malignant obstructive jaundice,” The American Journal of Surgery 222(5), 976–982 (2021).

13. C. Ercin, S. Bagci, Z. Yesilova, A. Aydin, A. Sayal, and G. Erdem, “Oxidative stress in extrahepatic cholestasis,” The Anatolian Journal of Clinical Investigation 2(4), 150−154 (2008).

14. M. Tanaka, K. Tanaka, Y. Masaki, M. Miyazaki, M. Kato, K. Kotoh, M. Enjoji, M. Nakamuta, and R. Takayanagi, “Intrahepatic microcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats,” International Journal of Molecular Medicine 33(2), 254–262 (2014).

15. A. Verma, V. Bhatnagar, S. Prakash, and A. Srivastava, “Analysis of bile in various hepatobiliary disease states: A pilot study,” Journal of Indian Association of Pediatric Surgeons 19(3), 151−155 (2014).

16. M. L. Shiffman, H. J. Sugerman, J. M. Kellum, and E. W. Moore, “Changes in gallbladder bile composition following gallstone formation and weight reduction,” Gastroenterology 103(1), 214–221 (1992).

17. A. P. M. Matton, Y. De Vries, L. C. Burlage, R. Van Rijn, M. Fujiyoshi, V. E. De Meijer, M. T. De Boer, R. H. J. De Kleine, H. J. Verkade, A. S. H. Gouw, T. Lisman, and R. J. Porte, “Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers,” Transplantation 103(7), 1405–1413 (2019).

18. I. M. A. Brüggenwirth, R. J. Porte, and P. N. Martins, “Bile composition as a diagnostic and prognostic tool in liver transplantation,” Liver Transplantation 26(9), 1177–1187 (2020).

19. S. Palmer, K. Litvinova, A. Dunaev, S. Fleming, D. McGloin, and G. Nabi, “Changes in autofluorescence based organoid model of muscle invasive urinary bladder cancer,” Biomedical Optics Express 7(4), 1193−1200 (2016).

20. A. V. Dunaev, V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, K. S. Litvinova, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow,” Medical Engineering & Physics 37(6), 574–583 (2015).

21. I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions,” Journal of Biomedical Optics 22(2), 027005 (2017).

22. A. C. Croce, A. Ferrigno, G. Santin, V. M. Piccolini, G. Bottiroli, and M. Vairetti, “Autofluorescence of liver tissue and bile: Organ functionality monitoring during ischemia and reoxygenation,” Lasers in Surgery and Medicine 46(5), 412–421 (2014).

23. A. C. Croce, A. Ferrigno, V. Bertone, V. M. Piccolini, C. Berardo, L. G. Di Pasqua, V. Rizzo, G. Bottiroli, and M. Vairetti, “Fatty liver oxidative events monitored by autofluorescence optical diagnosis: Comparison between subnormothermic machine perfusion and conventional cold storage preservation,” Hepatology Research 47(7), 668–682 (2017).

24. V. Dremin, E. Potapova, E. Zherebtsov, K. Kandurova, V. Shupletsov, A. Alekseyev, A. Mamoshin, and A. Dunaev, “Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study,” Scientific Reports 10(1), 14200 (2020).

25. E. V. Potapova, E. A. Zherebtsov, V. V. Shupletsov, V. V. Dremin, K. Y. Kandurova, A. V. Mamoshin, A. Y. Abramov, and A. V. Dunaev, “Detection of NADH and NADPH levels in vivo identifies shift of glucose metabolism in cancer to energy production,” The FEBS Journal 291(12), 2674–2682 (2024).

26. E. A. Zherebtsov, E. V. Potapova, A. V. Mamoshin, V. V. Shupletsov, K. Y. Kandurova, V. V. Dremin, A. Y. Abramov, and A. V. Dunaev, “Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma,” Biomedical Optics Express 13(2), 633 (2022).

27. K. Y. Kandurova, D. S. Sumin, A. V. Mamoshin, and E. V. Potapova, “Deconvolution of the fluorescence spectra measured through a needle probe to assess the functional state of the liver,” Lasers Surg Med 55(7), 690–701 (2023).

28. K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection,” Advanced Drug Delivery Reviews 89, 121–134 (2015).

29. E. V. Potapova, V. N. Prizemin, D. S. Sumin, and A. V. Mamoshin, “Assessment of Bilirubin Concentrations in the Bile of Patients with Obstructive Jaundice by Raman Spectroscopy,” Optics and Spectroscopy 132(2), 179–187 (2024).

30. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy,” Applied Spectroscopy 61(11), 1225–1232 (2007).

31. L. A. Bratchenko, I. A. Bratchenko, D. N. Artemyev, A. A. Moryatov, J. V. Starikova, E. N. Tupikova, I. A. Platonov, S. V. Kozlov, and V. P. Zakharov, “Conventional Raman and surface-enhanced Raman spectroscopy of ascitic fluid,” Journal of Physics: Conference Series 1368(2), 022032 (2019).

32. B. Yang, M. D. Morris, M. Xie, and D. A. Lightner, “Resonance Raman spectroscopy of bilirubins: band assignments and application to bilirubin/lipid complexation,” Biochemistry 30(3), 688–694 (1991).

33. L. Ouyang, L. Yao, R. Tang, X. Yang, and L. Zhu, “Biomimetic point-of-care testing of trace free bilirubin in serum by using glucose selective capture and surface-enhanced Raman spectroscopy,” Sensors and Actuators B: Chemical 340, 129941 (2021).

34. T. Okaya, K. Nakagawa, F. Kimura, H. Shimizu, H. Yoshidome, M. Ohtsuka, Y. Morita, and M. Miyazaki, “Obstructive jaundice impedes hepatic microcirculation in mice,” Hepatogastroenterology 55(88), 2146–2150 (2008).

35. A. C. Croce, A. Ferrigno, C. Berardo, G. Bottiroli, M. Vairetti, and L. G. Di Pasqua, “Spectrofluorometric Analysis of Autofluorescing Components of Crude Serum from a Rat Liver Model of Ischemia and Reperfusion,” Molecules 25(6), 1327 (2020).

36. U. T. Brunk, A. Terman, “Lipofuscin: mechanisms of age-related accumulation and influence on cell function,” Free Radical Biology and Medicine 33(5), 611–619 (2002).

37. O.-D. Ilie, A. Ciobica, S. Riga, N. Dhunna, J. McKenna, I. Mavroudis, B. Doroftei, A.-M. Ciobanu, and D. Riga, “Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality,” Medicina 56(11), 626 (2020).

38. S. G. Hübscher, R. F. Harrison, “Portal lymphadenopathy associated with lipofuscin in chronic cholestatic liver disease,” Journal of Clinical Pathology 42(11), 1160–1165 (1989).

39. M. Saif, W. J. Kwanten, J. A. Carr, I. X. Chen, J. M. Posada, A. Srivastava, J. Zhang, Y. Zheng, M. Pinter, S. Chatterjee, S. Softic, C. R. Kahn, K. Van Leyen, O. T. Bruns, R. K. Jain, and M. G. Bawendi, “Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin,” Nature Biomedical Engineering 4(8), 801–813 (2020).

40. E. I. Lebedzeva, “Histological characteristics of lipofuscin in the liver of rats with experimental cirrhosis,” Proceedings of the National Academy of Sciences of Belarus, Medical Series (2), 41–46 (2015). [in Russian]






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+