Silica Microspheres with Adsorbed Gold Nanostars for Single Cell SERS Detection of Formazan

Olga A. Inozemtseva (Login required)
Saratov State University, Russian Federation
Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences –
a separate structural subdivision of the Federal State Budgetary Scientific Institution Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, Russian Federation

Ekaterina S. Prikhozhdenko
Saratov State University, Russian Federation

Olga I. Gusliakova
Saratov State University, Russian Federation

Yulia A. Tyunina
Saratov State University, Russian Federation
Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences –
a separate structural subdivision of the Federal State Budgetary Scientific Institution Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, Russian Federation

Mariia S. Saveleva
Saratov State University, Russian Federation

Daniil N. Bratashov
Saratov State University, Russian Federation

Andrey M. Burov
Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences –
a separate structural subdivision of the Federal State Budgetary Scientific Institution Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, Russian Federation

Boris N. Khlebtsov
Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences –
a separate structural subdivision of the Federal State Budgetary Scientific Institution Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, Russian Federation


Paper #9160 received 30 Aug 2024; revised manuscript received 21 Oct 2024; accepted for publication 25 Oct 2024; published online 16 Nov 2024.

DOI: 10.18287/JBPE24.10.040308

Abstract

In this study we report a rapid and sensitive surface-enhanced Raman spectroscopy (SERS)-based 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for in situ cell viability and proliferation assessment. The developed method based on silica microspheres with adsorbed gold nanostars serves as intracellular SERS platforms for formazan detection. The proposed method has several advantages over traditional MTT assays. Firstly, the formazan concentration can be determined from the SERS signal intensity without extraction and enrichment steps. Secondly, the SERS spectra of formazan can be directly obtained at the level of a single particle internalized by the cell. The SERS-MTT detection method is expected to avoid interference from background substances (such as residual MTT reagent, serum, exogenous drugs) in cell suspensions. Furthermore, the proposed approach not only simplifies the testing procedure, but it is also anticipated to provide more precise results when evaluating the effectiveness of cancer treatments compared to the conventional MTT method.

Keywords

3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); surface-enhanced Raman spectroscopy (SERS); formazan; gold nanostars

Full Text:

PDF

References


1. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” Journal of Immunological Methods 65(1–2), 55–63 (1983).

2. A. M. Mattson, C. O. Jensen, and R. A. Dutcher, “Triphenyltetrazolium chloride as a dye for vital tissues,” Science 106(2752), 294–295 (1947).

3. A. S. Shawali, N. A. Samy, “Functionalized formazans: A review on recent progress in their pharmacological activities,” Journal of Advanced Research 6(3), 241–254 (2015).

4. F. M. Young, W. Phungtamdet, and B. J. S. Sanderson, “Modification of MTT assay conditions to examine the cytotoxic effects of amitraz on the human lymphoblastoid cell line, WIL2NS,” Toxicology in Vitro 19(8), 1051–1059 (2005).

5. F. Denizot, R. Lang, “Rapid colorimetric assay for cell growth and survival,” Journal of Immunological Methods 89(2), 271–277 (1986).

6. T. J. M. Patricia Price, Trevor J. McMillan, “Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation,” Cancer Research 50(5), 1392–1396 (1990).

7. D. Gerlier, N. Thomasset, “Use of MTT colorimetric assay to measure cell activation,” Journal of Immunological Methods 94(1−2), 57−63 (1986).

8. K. Buch, T. Peters, T. Nawroth, M. Sänger, H. Schmidberger, and P. Langguth, “Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay - A comparative study,” Radiation Oncology 7(1), 1 (2012).

9. E. Ulukaya, F. Ozdikicioglu, A. Y. Oral, and M. Demirci, “The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested,” Toxicology in Vitro 22(1), 232–239 (2008).

10. Z. Chen, G. Liu, M. Chen, B. Xu, Y. Peng, M. Chen, and M. Wu, “Screen anticancer drug in vitro using resonance light scattering technique,” Talanta 77(4), 1365–1369 (2009).

11. N. T. H. Nga, T. T. B. Ngoc, N. T. M. Trinh, T. L. Thuoc, and D. T. P. Thao, “Optimization and application of MTT assay in determining density of suspension cells,” Analytical Biochemistry 610, 113937 (2020).

12. R. Foldbjerg, D. A. Dang, and H. Autrup, “Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549,” Archives of Toxicology 85(7), 743–750 (2011).

13. P. Marqués-Gallego, H. den Dulk, C. Backendorf, J. Brouwer, J. Reedijk, and J. F. Burke, “Accurate non-invasive image-based cytotoxicity assays for cultured cells,” BMC Biotechnology 10(1), 43 (2010).

14. 14. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chemical Society Reviews 37(5), 1052 (2008).

15. Z. Mao, Z. Liu, L. Chen, J. Yang, B. Zhao, Y. M. Jung, X. Wang, and C. Zhao, “Predictive value of the surface-enhanced resonance raman scattering-based mtt assay: a rapid and ultrasensitive method for cell viability in situ,” Analytical Chemistry 85(15), 7361–7368 (2013).

16. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large‐area silver‐coated silicon nanowire arrays for molecular sensing using surface‐enhanced raman spectroscopy,” Advanced Functional Materials 18(16), 2348–2355 (2008).

17. A. Musumeci, D. Gosztola, T. Schiller, N. M. Dimitrijevic, V. Mujica, D. Martin, and T. Rajh, “SERS of semiconducting nanoparticles (TiO 2 hybrid composites),” Journal of the American Chemical Society 131(17), 6040–6041 (2009).

18. S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of hek293 cells expressing plcγ1 using surface-enhanced raman microscopy,” Analytical Chemistry 79(3), 916–922 (2007).

19. J. R. Lombardi, R. L. Birke, “A unified view of surface-enhanced raman scattering,” Accounts of Chemical Research 42(6), 734–742 (2009).

20. B. Tolaieb, C. J. L. Constantino, and R. F. Aroca, “Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection,” Analyst 129(4), 337 (2004).

21. S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface enhanced Raman spectroscopy and multivariate statistical techniques,” Analytical and Bioanalytical Chemistry 390(6), 1551–1555 (2008).

22. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology 26(1), 83–90 (2008).

23. J.-H. Kim, J.-S. Kim, H. Choi, S.-M. Lee, B.-H. Jun, K.-N. Yu, E. Kuk, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Nanoparticle probes with surface enhanced raman spectroscopic tags for cellular cancer targeting,” Analytical Chemistry 78(19), 6967–6973 (2006).

24. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Analytical and Bioanalytical Chemistry 390(1), 113–124 (2008).

25. Z. Wang, A. Bonoiu, M. Samoc, Y. Cui, and P. N. Prasad, “Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe,” Biosensors and Bioelectronics 23(6), 886–891 (2008).

26. R. Stevenson, R. J. Stokes, D. MacMillan, D. Armstrong, K. Faulds, R. Wadsworth, S. Kunuthur, C. J. Suckling, and D. Graham, “In situ detection of pterins by SERS,” Analyst 134(8), 1561 (2009).

27. H.-J. Van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proceedings of the National Academy of Sciences 102(29), 10159–10164 (2005).

28. B. N. Khlebtsov, A. M. Burov, S. V. Zarkov, and N. G. Khlebtsov, “Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances,” Physical Chemistry Chemical Physics 25(45), 30903–30913 (2023).

29. N. Pazos-Perez, L. Guerrini, and R. A. Alvarez-Puebla, “Plasmon tunability of gold nanostars at the tip apexes,” ACS Omega 3(12), 17173–17179 (2018).

30. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature Physical Science 241(105), 20–22 (1973).

31. B. N. Khlebtsov, A. M. Burov, “Synthesis of monodisperse silica particles by controlled regrowth,” Colloid Journal 85(3), 456–468 (2023).

32. V. Tuchin (Ed.), Tissue optics: light scattering methods and instruments for medical diagnostics, 3rd ed., SPIE Press, Bellingham, USA (2015). ISBN: 9781628415162.

33. H. Garn, H. Krause, V. Enzmann, and K. Dröβler, “An improved MTT assay using the electron-coupling agent menadione,” Journal of Immunological Methods 168(2), 253–256 (1994).

34. S. M. Thom, R. W. Horobin, E. Seidler, and M. R. Barer, “Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity,” Journal of Applied Bacteriology 74(4), 433–443 (1993).

35. M. Shoemaker, I. Cohen, and M. Campbell, “Reduction of MTT by aqueous herbal extracts in the absence of cells,” Journal of Ethnopharmacology 93(2–3), 381–384 (2004).

36. S.-W. Lim, H.-S. Loh, K.-N. Ting, T. D. Bradshaw, and Z. N. Allaudin, “Reduction of MTT to purple formazan by vitamin e isomers in the absence of cells,” Tropical Life Sciences Research 26(1), 111 (2015).

37. L. Peng, B. Wang, and P. Ren, “Reduction of MTT by flavonoids in the absence of cells,” Colloids Surfaces B Biointerfaces 45(2), 108–111 (2005).

38. P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19(1), 015606 (2008).

39. X. Zou, E. Ying, and S. Dong, “Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties,” Nanotechnology 17(18), 4758–4764 (2006).

40. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).

41. N. G. Khlebtsov, S. V. Zarkov, V. A. Khanadeev, and Y. A. Avetisyan, “A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification,” Nanoscale 12(38), 19963–19981 (2020).

42. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for dna and rna detection,” Science 297(5586), 1536–1540 (2002).

43. J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301(5641), 1884–1886 (2003).

44. W. E. Doering, S. Nie, “Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced raman scattering,” Analytical Chemistry 75(22), 6171–6176 (2003).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+