Visualizing Nucleic Acid Loci with the CRISPR-Cas System: Current Approaches

Gerel A. A. Abushinova
Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation

Victoria V. Zherdeva orcid
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation

Ekaterina M. Vassina orcid
Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation

Liliya G. Maloshenok orcid (Login required)
Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russian Federation
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation


Paper #9176 received 9 Oct 2024; revised manuscript received 27 Nov 2024; accepted for publication 27 Nov 2024; published online 29 Dec 2024.

DOI: 10.18287/JBPE24.10.040203

Abstract

The visualization of genomic loci in living cells is crucial for detecting mutations and observing the spatial proximity of DNA regions in the 3D nuclear environment. One of the primary applications of the clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR/Cas9) system is the non-invasive, real-time labeling of DNA loci in living cells, enabled by its unique characteristics. Visualization of genomic loci has been made possible by the use of an endonuclease-inactive form of the Cas9 protein (dCas9) and sgRNA in combination with fluorescent molecules. However, using CRISPR/Cas9 for targeting DNA regions has certain limitations, the most significant being suboptimal signal-to-noise ratio, the need for multiplexed labeling, and the large size of the Cas fluorescent reporter sytem, which impacts the complex’s functionality and complicates its delivery. Current variations of the method using CRISPR/dCas9 overcome these limitations in different ways. This review examines the evolution of genome locus visualization methods based on CRISPR/Cas9 from the initial use of the system to the present.

Keywords

CRISPR/Cas9; genome locus visualization; endonuclease-inactive Cas9 protein; nucleic acids

Full Text:

PDF

References


1. J. M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science 337(6096), 816–821 (2012).

2. L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim, “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression,” Cell 152(5), 1173–1183 (2013).

3. A. Vojta, P. Dobrinić, V. Tadić, L. Bočkor, P. Korać, B. Julg, M. Klasić, and V. Zoldoš, “Repurposing the CRISPR-Cas9 system for targeted DNA methylation,” Nucleic Acids Research 44(12), 5615–5628 (2016).

4. P. Bashtrykov, N. Rajaram, and A. Jeltsch, “Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase,” in Epigenomics, I. Hatada and T. Horii (Eds.), Springer US, 2577, 177–188 (2023).

5. H. O’Geen, S. L. Bates, S. S. Carter, K. A. Nisson, J. Halmai, K. D. Fink, S. K. Rhie, P. J. Farnham, and D. J. Segal, “Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner,” Epigenetics & Chromatin 12(1), 26 (2019).

6. A. Chavez, M. Tuttle, B. W. Pruitt, B. Ewen-Campen, R. Chari, D. Ter-Ovanesyan, S. J. Haque, R. J. Cecchi, E. J. K. Kowal, J. Buchthal, B. E. Housden, N. Perrimon, J. J. Collins, and G. Church, “Comparison of Cas9 activators in multiple species,” Nature Methods 13(7), 563–567 (2016).

7. A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage,” Nature 533(7603), 420–424 (2016)..

8. X. Liu, Y. Zhang, Y. Chen, M. Li, F. Zhou, K. Li, H. Cao, M. Ni, Y. Liu, Z. Gu, K. E. Dickerson, S. Xie, G. C. Hon, Z. Xuan, M. Q. Zhang, Z. Shao, and J. Xu, “In Situ Capture of Chromatin Interactions by Biotinylated dCas9,” Cell 170(5), 1028-1043.e19 (2017).

9. E. Schmidtmann, T. Anton, P. Rombaut, F. Herzog, and H. Leonhardt, “Determination of local chromatin composition by CasID,” Nucleus 7(5), 476–484 (2016).

10. J. Duan, G. Lu, Y. Hong, Q. Hu, X. Mai, J. Guo, X. Si, F. Wang, and Y. Zhang, “Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice,” Genome Biology 19(1), 192 (2018).

11. L. G. Maloshenok, G. A. Abushinova, A. Yu. Ryazanova, S. A. Bruskin, and V. V. Zherdeva, “Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo,” Biochemistry Moscow 88(S1), S123–S149 (2023).

12. L. Stuppia, I. Antonucci, G. Palka, and V. Gatta, “Use of the MLPA Assay in the Molecular Diagnosis of Gene Copy Number Alterations in Human Genetic Diseases,” International Journal of Molecular Sciences 13(3), 3245–3276 (2012).

13. X. Xu, L. S. Qi, “A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology,” Journal of Molecular Biology 431(1), 34–47 (2019).

14. T. A. Kazi, S. R. Biswas, “CRISPR/dCas system as the modulator of gene expression,” in Progress in Molecular Biology and Translational Science, Elsevier, 178, 99–122 (2021).

15. B. Paul, G. Montoya, “CRISPR-Cas12a: Functional overview and applications,” Biomedical Journal 43(1), 8–17 (2020).

16. D. Singh, J. Mallon, A. Poddar, Y. Wang, R. Tippana, O. Yang, S. Bailey, and T. Ha, “Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a),” Proceedings of the National Academy of Science 115(21), 5444–5449 (2018).

17. L. Liu, D.-S. Pei, “Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family,” International Journal of Molecular Sciences 23(19), 11400 (2022).

18. T. Karvelis, G. Bigelyte, J. K. Young, Z. Hou, R. Zedaveinyte, K. Budre, S. Paulraj, V. Djukanovic, S. Gasior, A. Silanskas, Č. Venclovas, and V. Siksnys, “PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage,” Nucleic Acids Research 48(9), 5016–5023 (2020).

19. R. Xiao, Z. Li, S. Wang, R. Han, and L. Chang, “Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease,” Nucleic Acids Research 49(7), 4120–4128 (2021).

20. T. Wu, C. Liu, S. Zou, R. Lyu, B. Yang, H. Yan, M. Zhao, and W. Tang, “An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity,” Nature Chemical Biology 19(11), 1384–1393 (2023).

21. B. Chen, L. A. Gilbert, B. A. Cimini, J. Schnitzbauer, W. Zhang, G.-W. Li, J. Park, E. H. Blackburn, J. S. Weissman, L. S. Qi, and B. Huang, “Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System,” Cell 155(7), 1479–1491 (2013).

22. B. Chen, J. Hu, R. Almeida, H. Liu, S. Balakrishnan, C. Covill-Cooke, W. A. Lim, and B. Huang, “Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci,” Nucleic Acids Research 44(8), e75–e75 (2016).

23. H. Ma, A. Naseri, P. Reyes-Gutierrez, S. A. Wolfe, S. Zhang, and T. Pederson, “Multicolor CRISPR labeling of chromosomal loci in human cells,” Proceedings of the National Academy of Sciences 112(10), 3002–3007 (2015).

24. M. E. Tanenbaum, L. A. Gilbert, L. S. Qi, J. S. Weissman, and R. D. Vale, “A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging,” Cell 159(3), 635–646 (2014).

25. H. Ye, Z. Rong, and Y. Lin, “Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein,” Protein & Cell 8(11), 853–855 (2017).

26. Y. Hong, G. Lu, J. Duan, W. Liu, and Y. Zhang, “Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging,” Genome Biology 19(1), 39 (2018).

27. J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet, and L. D. Lavis, “A general method to improve fluorophores for live-cell and single-molecule microscopy,” Nature Methods 12(3), 244–250 (2015).

28. W. Deng, X. Shi, R. Tjian, T. Lionnet, and R. H. Singer, “CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells,” Proceedings of the National Academy of Sciences 112(38), 11870–11875 (2015).

29. X. Wu, S. Mao, Y. Yang, M. N. Rushdi, C. J. Krueger, and A. K. Chen, “A CRISPR/molecular beacon hybrid system for live-cell genomic imaging,” Nucleic Acids Research 46(13), e80–e80 (2018).

30. S. Mao, Y. Ying, X. Wu, C. J. Krueger, and A. K. Chen, “CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci,” Nucleic Acids Research 47(20), e131–e131 (2019). doi:.

31. P. A. Clow, M. Du, N. Jillette, A. Taghbalout, J. J. Zhu, and A. W. Cheng, “CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus,” Nature Communications 13(1), 1871 (2022).

32. Z. Zhang, X. Rong, T. Xie, Z. Li, H. Song, S. Zhen, H. Wang, J. Wu, S. R. Jaffrey, and X. Li, “Fluorogenic CRISPR for genomic DNA imaging,” Nature Communications 15(1), 934 (2024).

33. M. Chen, X. Huang, Y. Shi, W. Wang, Z. Huang, Y. Tong, X. Zou, Y. Xu, and Z. Dai, “CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA,” Advanced Science 11(32), 2402534 (2024).

34. X.-Y. Lyu, Y. Deng, X.-Y. Huang, Z.-Z. Li, G.-Q. Fang, D. Yang, F.-L. Wang, W. Kang, E.-Z. Shen, and C.-Q. Song, “Correction: CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification,” Cell Research 32(12), 1133–1133 (2022).

35. Q. Peng, Z. Huang, K. Sun, Y. Liu, C. W. Yoon, R. E. S. Harrison, D. L. Schmitt, L. Zhu, Y. Wu, I. Tasan, H. Zhao, J. Zhang, S. Zhong, S. Chien, and Y. Wang, “Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells,” Nature Communications 13(1), 7933 (2022).

36. D. A. Nelles, M. Y. Fang, M. R. O’Connell, J. L. Xu, S. J. Markmiller, J. A. Doudna, and G. W. Yeo, “Programmable RNA Tracking in Live Cells with CRISPR/Cas9,” Cell 165(2), 488–496 (2016).

37. R. Batra, D. A. Nelles, E. Pirie, S. M. Blue, R. J. Marina, H. Wang, I. A. Chaim, J. D. Thomas, N. Zhang, V. Nguyen, S. Aigner, S. Markmiller, G. Xia, K. D. Corbett, M. S. Swanson, and G. W. Yeo, “Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9,” Cell 170(5), 899-912.e10 (2017).

38. N.-H. Sun, D.-Y. Chen, L.-P. Ye, G. Sheng, J.-J. Gong, B.-H. Chen, Y.-M. Lu, and F. Han, “CRISPR-Sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells,” Theranostics 10(24), 10993–11012 (2020).

39. X. Chen, D. Zhang, N. Su, B. Bao, X. Xie, F. Zuo, L. Yang, H. Wang, L. Jiang, Q. Lin, M. Fang, N. Li, X. Hua, Z. Chen, C. Bao, J. Xu, W. Du, L. Zhang, Y. Zhao, L. Zhu, J. Loscalzo, and Y. Yang, “Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs,” Nature Biotechnology 37(11), 1287–1293 (2019).

40. L.-Z. Yang, Y. Wang, S.-Q. Li, R.-W. Yao, P.-F. Luan, H. Wu, G. G. Carmichael, and L.-L. Chen, “Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems,” Molecular Cell 76(6), 981-997.e7 (2019).

41. O. O. Abudayyeh, J. S. Gootenberg, P. Essletzbichler, S. Han, J. Joung, J. J. Belanto, V. Verdine, D. B. T. Cox, M. J. Kellner, A. Regev, E. S. Lander, D. F. Voytas, A. Y. Ting, and F. Zhang, “RNA targeting with CRISPR–Cas13,” Nature 550(7675), 280–284 (2017).

42. H. Tang, J. Peng, S. Peng, Q. Wang, X. Jiang, X. Xue, Y. Tao, L. Xiang, Q. Ji, S.-M. Liu, X. Weng, and X. Zhou, “Live-cell RNA imaging using the CRISPR-dCas13 system with modified sgRNAs appended with fluorescent RNA aptamers,” Chemical Science 13(47), 14032–14040 (2022).

43. H. Tang, J. Peng, X. Jiang, S. Peng, F. Wang, X. Weng, and X. Zhou, “A CRISPR-Cas and Tat Peptide with Fluorescent RNA Aptamer System for Signal Amplification in RNA Imaging,” Biosensors 13(2), 293 (2023).

44. L. Maloshenok, G. Abushinova, N. Kazachkina, A. Bogdanov, and V. Zherdeva, “Tet-Regulated Expression and Optical Clearing for In Vivo Visualization of Genetically Encoded Chimeric dCas9/Fluorescent Protein Probes,” Materials 16(3), 940 (2023).

45. H. Ma, L.-C. Tu, A. Naseri, M. Huisman, S. Zhang, D. Grunwald, and T. Pederson, “Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow,” Nature Biotechnology 34(5), 528–530 (2016).

46. T. Anton, S. Bultmann, H. Leonhardt, and Y. Markaki, “Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system,” Nucleus 5(2), 163–172 (2014).

47. S. C. Knight, L. Xie, W. Deng, B. Guglielmi, L. B. Witkowsky, L. Bosanac, E. T. Zhang, M. El Beheiry, J.-B. Masson, M. Dahan, Z. Liu, J. A. Doudna, and R. Tjian, “Dynamics of CRISPR-Cas9 genome interrogation in living cells,” Science 350(6262), 823–826 (2015).

48. S. Fujimoto, S. Matsunaga, “Visualization of Chromatin Loci with Transiently Expressed CRISPR/Cas9 in Plants,” CYTOLOGIA 82(5), 559–562 (2017).

49. S. Dreissig, S. Schiml, P. Schindele, O. Weiss, T. Rutten, V. Schubert, E. Gladilin, M. F. Mette, H. Puchta, and A. Houben, “Live-cell CRISPR imaging in plants reveals dynamic telomere movements,” The Plant Journal 91(4), 565–573 (2017).

50. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nature Methods 5(9), 763–775 (2008).

51. Z.-G. Wang, S.-L. Liu, and D.-W. Pang, “Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking,” Accounts of Chemical Research 54(14), 2991–3002 (2021).

52. S. P. B. Van Beljouw, J. Sanders, A. Rodríguez-Molina, and S. J. J. Brouns, “RNA-targeting CRISPR–Cas systems,” Nature Reviews Microbiology 21(1), 21–34 (2023).

53. A. D. Elliott, “Confocal Microscopy: Principles and Modern Practices,” Current Protocols in Cytometry 92(1), e68 (2020).

54. Z. Yin, T. Kanade, and M. Chen, “Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation,” Medical Image Analysis 16(5), 1047–1062 (2012).

55. R. K. P. Benninger, D. W. Piston, “Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues,” Current Protocols in Cell Biology 59(1), (2013).

56. X. Chen, S. Zhong, Y. Hou, R. Cao, W. Wang, D. Li, Q. Dai, D. Kim, and P. Xi, “Superresolution structured illumination microscopy reconstruction algorithms: a review,” Light: Science & Applications 12(1), 172 (2023).

57. R. Datta, T. M. Heaster, J. T. Sharick, A. A. Gillette, and M. C. Skala, “Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications,” Journal of Biomedical Optics 25(07), 1 (2020).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+