Design of a Photonic Integrated Circuit for Swept-Source OCT for Simultaneous Operation in Two Distinct Wavelength Ranges
Paper #9190 received 20 Nov 2024; revised manuscript received 18 Dec 2024; accepted for publication 19 Dec 2024; published online 31 Jan 2025.
DOI: 10.18287/JBPE25.11.010301
Abstract
Keywords
Full Text:
PDFReferences
1. J. Ong, A. Zarnegar, G. Corradetti, S. R. Singh, and J. Chhablani, “Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders,” Journal of Clinical Medicine 11(17), 5139 (2022).
2. R. Shen, L. K. Y. Chan, A. C. W. Yip, and P. P. Chan, “Applications of optical coherence tomography angiography in glaucoma: current status and future directions,” Frontiers in Medicine 11, 1428850 (2024).
3. A. Murata, D. Wallace-Bradley, A. Tellez, C. Alviar, M. Aboodi, A. Sheehy, L. Coleman, L. Perkins, G. Nakazawa, G. Mintz, G. L. Kaluza, R. Virmani, and J. F. Granada, “Accuracy of Optical Coherence Tomography in the Evaluation of Neointimal Coverage After Stent Implantation,” JACC: Cardiovascular Imaging 3(1), 76–84 (2010).
4. A. Karanasos, J. Ligthart, K. Witberg, G. Van Soest, N. Bruining, and E. Regar, “Optical Coherence Tomography: Potential Clinical Applications,” Current Cardiovascular Imaging Reports 5(4), 206–220 (2012).
5. B. Wan, C. Ganier, X. Du-Harpur, N. Harun, F. M. Watt, R. Patalay, and M. D. Lynch, “Applications and future directions for optical coherence tomography in dermatology,” British Journal of Dermatology 184(6), 1014–1022 (2021).
6. J. Olsen, L. Themstrup, N. De Carvalho, M. Mogensen, G. Pellacani, and G. B. E. Jemec, “Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma,” Photodiagnosis and Photodynamic Therapy 16, 44–49 (2016).
7. G. Odorici, A. Losi, S. Ciardo, G. Pellacani, and A. Conti, “Non-invasive evaluation of Secukinumab efficacy in severe plaque psoriasis with confocal microscopy and optical coherence tomography: A case report,” Skin Research and Technology 24(1), 160–162 (2018).
8. P. Gong, S. Es’haghian, K.-A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” Journal of Biophotonics 9(6), 626–636 (2016).
9. T. Kostanyan, G. Wollstein, and J. S. Schuman, “New developments in optical coherence tomography,” Current Opinion in Ophthalmology 26(2), 110–115 (2015).
10. E. A. Rank, A. Agneter, T. Schmoll, R. A. Leitgeb, and W. Drexler, “Miniaturizing optical coherence tomography,” Translational Biophotonics 4(1–2), e202100007 (2022).
11. L. Chang, N. Weiss, T. G. Van Leeuwen, M. Pollnau, R. M. De Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm,” Optics Express 24(12), 12635 (2016).
12. R. M. Ruis, A. Leinse, R. Dekker, R. G. Heideman, T. G. Van Leeuwen, and D. J. Faber, “Decreasing the Size of a Spectral Domain Optical Coherence Tomography System With Cascaded Arrayed Waveguide Gratings in a Photonic Integrated Circuit,” IEEE Journal of Selected Topics in Quantum Electronics 25(1), 1–9 (2019).
13. J. Sancho-Durá, K. Zinoviev, J. Lloret-Soler, J. L. Rubio-Guviernau, E. Margallo-Balbás, and W. Drexler, “Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography,” Journal of Biophotonics 11(10), e201800193 (2018).
14. Y. Huang, M. Badar, A. Nitkowski, A. Weinroth, N. Tansu, and C. Zhou, “Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device,” Biomedical Optics Express 8(8), 3856 (2017).
15. E. A. Rank, S. Nevlacsil, P. Muellner, R. Hainberger, M. Salas, S. Gloor, M. Duelk, M. Sagmeister, J. Kraft, R. A. Leitgeb, and W. Drexler, “In vivo human retinal swept source optical coherence tomography and angiography at 830 nm with a CMOS compatible photonic integrated circuit,” Scientific Reports 11(1), 21052 (2021).
16. I. V. Stepanov, E. A. Talynev, R. V. Kutluyarov, A. A. Ivanov, and E. P. Grakhova, “4-channel SS-OCT system design based on the silicon photonics chip with a high-scale integration,” in Optical Technologies for Telecommunications 2022, A. V. Bourdine, O. G. Morozov, and A. H. Sultanov (Eds.), SPIE Proceedings 12743 (2023).
17. X. Ji, X. Yao, Y. Gan, A. Mohanty, M. A. Tadayon, C. P. Hendon, and M. Lipson, “On-chip tunable photonic delay line,” APL Photonics 4(9), 090803 (2019).
18. E. A. Rank, R. Sentosa, D. J. Harper, M. Salas, A. Gaugutz, D. Seyringer, S. Nevlacsil, A. Maese-Novo, M. Eggeling, P. Muellner, R. Hainberger, M. Sagmeister, J. Kraft, R. A. Leitgeb, and W. Drexler, “Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings,” Light: Science & Applications 10(1), 6 (2021).
19. S. Nevlacsil, P. Muellner, A. Maese-Novo, M. Eggeling, F. Vogelbacher, M. Sagmeister, J. Kraft, E. Rank, W. Drexler, and R. Hainberger, “Multi-channel swept source optical coherence tomography concept based on photonic integrated circuits,” Optics Express 28(22), 32468 (2020).
20. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. De Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Optics Express 21(14), 16648 (2013).
21. J. W. Evans, R. J. Zawadzki, R. Liu, J. W. Chan, S. M. Lane, and J. S. Werner, “Optical coherence tomography and Raman spectroscopy of the ex-vivo retina,” Journal of Biophotonics 2(6–7), 398–406 (2009).
22. M. Tamošiūnas, O. Čiževskis, D. Viškere, M. Melderis, U. Rubins, and B. Cugmas, “Multimodal Approach of Optical Coherence Tomography and Raman Spectroscopy Can Improve Differentiating Benign and Malignant Skin Tumors in Animal Patients,” Cancers 14(12), 2820 (2022).
23. X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Optics Express 19(20), 19653 (2011).
24. S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomedical Optics Express 6(7), 2481 (2015).
25. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Optics Express 15(17), 10832 (2007).
26. M. Zhang, L. Ma, and P. Yu, “Dual-band Fourier domain optical coherence tomography with depth-related compensations,” Biomedical Optics Express 5(1), 167 (2014).
27. S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” Journal of Biomedical Optics 21(6), 066013 (2016).
28. A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging,” Biomedical Optics Express 10(2), 694 (2019).
29. R. S. El Shamy, M. A. Swillam, and X. Li, “Comparative Study of Photonic Platforms and Devices for On-Chip Sensing,” Photonics 10(11), 1233 (2023).
30. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology 13(4), 615–627 (1995).
31. F. Amanti, G. Andrini, F. Armani, F. Barbato, V. Bellani, V. Bonaiuto, S. Cammarata, M. Campostrini, T. H. Dao, F. De Matteis, V. Demontis, S. Donati, G. Di Giuseppe, S. Ditalia Tchernij, A. Fontana, J. Forneris, L. Frontini, R. Gunnella, S. Iadanza, A. E. Kaplan, C. Lacava, V. Liberali, L. Martini, F. Marzioni, L. Morescalchi, E. Pedreschi, P. Piergentili, D. Prete, V. Rigato, C. Roncolato, F. Rossella, M. Salvato, F. Sargeni, J. Shojaii, F. Spinella, A. Stabile, A. Toncelli, and V. Vitali, “Integrated Photonic Passive Building Blocks on Silicon-on-Insulator Platform,” Photonics 11(6), 494 (2024).
32. I. V. Stepanov, E. A. Talynev, A. A. Ivanov, R. V. Kutluyarov, and E. P. Grakhova, “Design of a Photonic Integrated Device with an on-Chip k-Clock and Tunable Reference Arm for Swept-Source Optical Coherence Tomography,” Journal of Biomedical Photonics & Engineering 9(3), 030317 (2023).
33. A. Sabeeh, V. Tuchin, “Recent Advances in the Laser Radiation Transport through the Head Tissues of Humans and Animals – A Review,” Journal of Biomedical Photonics & Engineering 6(4), 040201 (2020).
34. G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Scientific Reports 7(1), 7246 (2017).
35. Y. Fei, L. Zhang, T. Cao, Y. Cao, and S. Chen, “Ultracompact polarization splitter–rotator based on an asymmetric directional coupler,” Applied Optics 51(34), 8257 (2012).
36. S. Kumar Bag, S. K. Varshney, “Ultrawide FSR microring racetrack resonator with an integrated Fabry–Perot cavity for refractive index sensing,” Journal of the Optical Society of America B 38(5), 1669 (2021).
37. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic Optical Coherence Tomography and Microscopy,” IEEE Journal of Selected Topics in Quantum Electronics 13(6), 1629–1640 (2007).
38. M. Reddikumar, K. Bose, and R. Poddar, “Implementation of the swept source optical coherence tomography (SSOCT) system with a statistical method to analyze optical properties of turbid media,” Optik 127(4), 1656–1659 (2016).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+