Comparison of Machine Learning Methods for the Analysis of Serum Raman Spectra in the Detection of Chronic Heart Failure

Elena Sorokina
Samara National Research University, Russian Federation

Yulia Khristoforova (Login required)
Samara National Research University, Russian Federation

Ivan Bratchenko
Samara National Research University, Russian Federation

Maria Skuratova
Samara City Clinical Hospital №1 named after N. I. Pirogov, Russian Federation

Petr Lebedev
Samara State Medical University, Russian Federation

Valery Zakharov
Samara National Research University, Russian Federation


Paper #9195 received 4 Dec 2024; revised manuscript received 24 Oct 2024; accepted for publication 24 Oct 2024; published online 30 Dec 2024.

DOI: 10.18287/JBPE24.10.040319

Abstract

The high sensitivity of Raman spectroscopy to the chemical composition of substances at the molecular level makes it a valuable tool for the diagnosis of chronic heart failure (CHF) through analysis of blood serum. Raman spectroscopy offers a label-free, fast detection method, with highly specific and accurate results when combined with machine learning (ML) techniques. However, it is essential to carefully choose the appropriate ML algorithm for analyzing high-dimensional spectral data to achieve reliable and correct results that are primarily based on the true chemical features and differences of the studied samples, specimens or structures as not all algorithms may deliver the high performance. In this study, we compared four approaches: (1) multivariate curve resolution alternating least squares method in combination with logistic regression (MCR-LR), (2) with linear kernel support vector machine (MCR-SVM), (3) projection on the latent structures with discriminant analysis (PLS-DA), and (4) projection on the latent structures with linear kernel support vector machine (PLS-SVM). These methods were applied to 193 Raman spectra from patients with CHF and 78 from control cases. We found that PLS-DA and PLS-SVM demonstrated the best ROC AUCs, with average value of 0.950 (0.91−0.97, 0.95 CI) and 0.99 (0.94−1.00, 0.95 CI), while MCR-LR and MCR-SVM achieved only 0.50 (0.46−0.53, 0.95 CI) and 0.59 (0.54−0.65, 0.95 CI), respectively.

Keywords

Raman spectroscopy, spectral analysis, multivariate curve resolution alternating least squares method, projection on the latent structures with discriminant analysis, linear kernel support vector machine, chronic heart failure

Full Text:

PDF

References


1. T. A. McDonagh, M. Metra, M. Adamo, et al., “2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure,” European Heart Journal 42(36), 3599–3726 (2021).

2. M. Onodera, M. Nakamura, F. Tanaka, T. Takahashi, S. Makita, T. Ishisone, Y. Ishibashi, K. Itai, T. Onoda, M. Ohsawa, K. Tanno, K. Sakata, S. Omama, K. Ogasawara, A. Ogawa, T. Kuribayashi, K. Sakamaki, and A. Okayama, “Plasma B-Type Natriuretic Peptide Is Useful for Cardiovascular Risk Assessment in Community-Based Diabetes Subjects: Comparison With Albuminuria,” International Heart Journal 53(3), 176–181 (2012).

3. Y. Khristoforova, L. Bratchenko, and I. Bratchenko, “Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review,” International Journal of Molecular Sciences 24(21), 15605 (2023).

4. S. Abalde-Cela, L. Wu, A. Teixeira, K. Oliveira, and L. Diéguez, “Multiplexing Liquid Biopsy with Surface-Enhanced Raman Scattering Spectroscopy,” Advanced Optical Materials 9(15), 2001171 (2021).

5. I. A. Bratchenko, L. A. Bratchenko, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “Classification of skin cancer using convolutional neural networks analysis of Raman spectra,” Computer Methods and Programs in Biomedicine 219, 106755 (2022).

6. Y. A. Khristoforova, L. A. Bratchenko, M. A. Skuratova, E. A. Lebedeva, P. A. Lebedev, and I. A. Bratchenko, “Raman spectroscopy in chronic heart failure diagnosis based on human skin analysis,” Journal of Biophotonics 16(7), e202300016 (2023).

7. L. Huang, H. Sun, L. Sun, K. Shi, Y. Chen, X. Ren, Y. Ge, D. Jiang, X. Liu, W. Knoll, Q. Zhang, and Y. Wang, “Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning,” Nature Communications 14(1), 48 (2023).

8. H. Yang, C. Zhao, R. Li, C. Shen, X. Cai, L. Sun, C. Luo, and Y. Yin, “Noninvasive and prospective diagnosis of coronary heart disease with urine using surface-enhanced Raman spectroscopy,” Analyst 143(10), 2235–2242 (2018).

9. H. Leng, C. Chen, R. Si, C. Chen, H. Qu, and X. Lv, “Accurate screening of early-stage lung cancer based on improved ResNeXt model combined with serum Raman spectroscopy,” Journal of Raman Spectroscopy 53(7), 1302–1311 (2022).

10. N. M. Ralbovsky, I. K. Lednev, “Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 219, 463–487 (2019).

11. I. Matveeva, I. Bratchenko, Y. Khristoforova, L. Bratchenko, A. Moryatov, S. Kozlov, O. Kaganov, and V. Zakharov, “Multivariate Curve Resolution Alternating Least Squares Analysis of In Vivo Skin Raman Spectra,” Sensors 22(24), 9588 (2022).

12. A. Ospanov, I. Romanishkin, T. Savelieva, A. Kosyrkova, S. Shugai, S. Goryaynov, G. Pavlova, I. Pronin, and V. Loschenov, “Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods,” International Journal of Molecular Sciences 24(19), 14432 (2023).

13. S. Shafaq, M. Irfan Majeed, H. Nawaz, N. Rashid, M. Akram, N. Yaqoob, A. Tariq, S. Shakeel, A. Ul Haq, M. Saleem, M. Zaman Nawaz, and R. Zaki Abdul Bari, “Quantitative analysis of solid dosage forms of Losartan potassium by Raman spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 272, 120996 (2022).

14. K. Bērziņš, S. D. L. Harrison, C. Leong, S. J. Fraser-Miller, M. J. Harper, A. Diana, R. S. Gibson, L. A. Houghton, and K. C. Gordon, “Qualitative and quantitative vibrational spectroscopic analysis of macronutrients in breast milk,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246, 118982 (2021).

15. I. Behl, G. Calado, A. Vishwakarma, D. Traynor, S. Flint, S. Galvin, C. M. Healy, M. L. Pimentel, A. Malkin, H. J. Byrne, and F. M. Lyng, “Classification of cytological samples from oral potentially malignant lesions through Raman spectroscopy: A pilot study,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 266, 120437 (2022).

16. S. Zhu, Y. Li, H. Gao, G. Hou, X. Cui, S. Chen, and C. Ding, “Identification and assessment of pulmonary Cryptococcus neoformans infection by blood serum surface-enhanced Raman spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 260, 119978 (2021).

17. I. Bratchenko, Y. Khristoforova, L. Bratchenko, A. Moryatov, S. Kozlov, E. Borisova, and V. Zakharov, “Optical Biopsy of Amelanotic Melanoma with Raman and Autofluorescence Spectra Stimulated by 785 nm Laser Excitation,” Journal of Biomedical Photonics & Engineering 7(2), 020308 (2021).

18. P. H. C. Eilers, H. F. M. Boelens, “Baseline correction with asymmetric least squares smoothing,” Leiden University Medical Centre Report 1(1), 5 (2005).

19. S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Analytical Methods 6(12), 4402–4407 (2014).

20. A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Analytical Chemistry 36(8), 1627–1639 (1964).

21. I. Pence, A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chemical Society Reviews 45(7), 1958–1979 (2016).

22. J. Felten, H. Hall, J. Jaumot, R. Tauler, A. De Juan, and A. Gorzsás, “Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS),” Nature Protocols 10(2), 217–240 (2015).

23. J. Jaumot, A. De Juan, and R. Tauler, “MCR-ALS GUI 2.0: New features and applications,” Chemometrics and Intelligent Laboratory Systems 140, 1–12 (2015).

24. I. A. Bratchenko, L. A. Bratchenko, “Comment on “Combining derivative Raman with autofluorescence to improve the diagnosis performance of echinococcosis”,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 252, 119514 (2021).

25. J. A. Hanley, B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,” Radiology 148(3), 839–843 (1983).

26. K. Kralova, M. Kral, O. Vrtelka, and V. Setnicka, “Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: A demonstration on Alzheimer’s disease,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304, 123392 (2024).

27. M. Saleem, M. Bilal, S. Anwar, A. Rehman, and M. Ahmed, “Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy,” Laser Physics Letters 10(3), 035602 (2013).

28. H. Horiue, M. Sasaki, Y. Yoshikawa, M. Toyofuku, and S. Shigeto, “Raman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilms,” Scientific Reports 10(1), 7704 (2020).

29. M. Wang, R. Tang, R. Zhou, Y. Qian, and D. Di, “The protective effect of serum carotenoids on cardiovascular disease: a cross-sectional study from the general US adult population,” Frontiers in Nutrition 10, 1154239 (2023).

30. I. A. Matveeva, A. I. Komlev, O. I. Kaganov, A. A. Moryatov, and V. P. Zakharov, “Multidimensional Analysis of Dermoscopic Images and Spectral Information for the Diagnosis of Skin Tumors,” Journal of Biomedical Photonics & Engineering 10(1), 010307 (2024).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+