Singlet Oxygen Detection: A Review of Recent Advances
DOI: 10.18287/JBPE25.11.020201
Abstract
Keywords
Full Text:
PDFReferences
1. G. Herzberg, “Photography of the Infra-Red Solar Spectrum to Wave-length 12,900 A,” Nature 133(3368), 759–759 (1934).
2. I. N. Novikova, E. V. Potapova, V. V. Dremin, A. V. Dunaev, and A. Y. Abramov, “Laser-induced singlet oxygen selectively triggers oscillatory mitochondrial permeability transition and apoptosis in melanoma cell lines,” Life Sciences 304, 120720 (2022).
3. V. Dremin, O. Semyachkina-Glushkovskaya, and E. Rafailov, “Direct Laser-Induced Singlet Oxygen in Biological Systems: Application From in Vitro to in Vivo,” IEEE Journal of Selected Topics in Quantum Electronics 29(4: Biophotonics), 1–11 (2023).
4. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chemical Reviews 110(5), 2795–2838 (2010).
5. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” JNCI Journal of the National Cancer Institute 90(12), 889–905 (1998).
6. I. Makovik, M. Volkov, L. Eratova, and V. Dremin, “Vascular targeted optical theranostics: enhanced photoplethysmography imaging of laser-induced singlet oxygen effects,” Optics Letters 49(5), 1137 (2024).
7. X. Ragàs, X. He, M. Agut, M. Roxo-Rosa, A. Gonsalves, A. Serra, and S. Nonell, “Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli,” Molecules 18(3), 2712–2725 (2013).
8. A. Blázquez-Castro, “Direct 1O2 optical excitation: A tool for redox biology,” Redox Biology 13, 39–59 (2017).
9. C. Schweitzer, R. Schmidt, “Physical Mechanisms of Generation and Deactivation of Singlet Oxygen,” Chemical Reviews 103(5), 1685–1758 (2003).
10. K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” Journal of Biophotonics 3(5–6), 304–318 (2010).
11. A. A. Krasnovsky, “Luminescence of singlet oxygen during energy transfer from photoexcited pigments in solution,” Biofizika 21, 748–755 (1976).
12. A. A. Krasnovsky, “Photoluminescence of singlet oxygen in pigment solutions,” Photochemistry and Photobiology 29(1), 29–36 (1979).
13. S. Oelckers, T. Ziegler, I. Michler, and B. Röder, “Time-resolved detection of singlet oxygen luminescence in red-cell ghost suspensions: concerning a signal component that can be attributed to 1O2 luminescence from the inside of a native membrane,” Journal of Photochemistry and Photobiology B: Biology 53(1–3), 121–127 (1999).
14. J. G. Parker, “Optical monitoring of singlet oxygen generation during photodynamic treatment of tumors,” IEEE Circuits and Devices Magazine 3(1), 10–21 (1987).
15. M. S. Patterson, S. J. Madsen, and B. C. Wilson, “Experimental tests of the feasibility of singlet oxygen luminescence monitoring in vivo during photodynamic therapy,” Journal of Photochemistry and Photobiology B: Biology 5(1), 69–84 (1990).
16. M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo,” Photochemistry and Photobiology 75(4), 382–391 (2002).
17. T. Hirano, E. Kohno, and M. Nishiwaki, “Detection of near infrared emission from singlet oxygen in PDT with an experimental tumor bearing mouse,” Journal of Japan Society for Laser Surgery and Medicine 22, 99–108 (2002)
18. M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Research 63(22), 7986–7994 (2003).
19. M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” British Journal of Cancer 92(2), 298–304 (2005).
20. J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of Singlet Oxygen Is Useful for Predicting the Photodynamic Effects in the Treatment for Experimental Glioma,” Clinical Cancer Research 12(23), 7132–7139 (2006).
21. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” Journal of Biomedical Optics 13(6), 064035 (2008).
22. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Optics Express 21(4), 5005 (2013).
23. A. E. Moskalensky, T. Yu. Karogodina, A. Yu. Vorobev, and S. G. Sokolovski, “Singlet oxygen luminescence detector based on low-cost InGaAs avalanche photodiode,” HardwareX 10, e00224 (2021).
24. E. Skovsen, J. W. Snyder, J. D. C. Lambert, and P. R. Ogilby, “Lifetime and Diffusion of Singlet Oxygen in a Cell,” The Journal of Physical Chemistry B 109(18), 8570–8573 (2005).
25. E. F. F. Da Silva, B. W. Pedersen, T. Breitenbach, R. Toftegaard, M. K. Kuimova, L. G. Arnaut, and P. R. Ogilby, “Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process,” The Journal of Physical Chemistry B 116(1), 445–461 (2012).
26. M. Westberg, M. Bregnhøj, A. Blázquez-Castro, T. Breitenbach, M. Etzerodt, and P. R. Ogilby, “Control of singlet oxygen production in experiments performed on single mammalian cells,” Journal of Photochemistry and Photobiology A: Chemistry 321, 297–308 (2016).
27. P. Morozov, M. Lukina, M. Shirmanova, A. Divochiy, V. Dudenkova, G. N. Gol’tsman, W. Becker, and V. I. Shcheslavskiy, “Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting,” Optics Letters 46(6), 1217 (2021).
28. S. Hackbarth, W. Islam, J. Fang, V. Subr, B. Röder, T. Etrych, and H. Maeda, “Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors,” Photochemical & Photobiological Sciences 18(6), 1304–1314 (2019).
29. Y. You, “Chemical tools for the generation and detection of singlet oxygen,” Organic & Biomolecular Chemistry 16(22), 4044–4060 (2018).
30. P. S. Hosford, N. Ninkina, V. L. Buchman, J. C. Smith, N. Marina, and S. SheikhBahaei, “Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice,” Brain Sciences 10(9), 583 (2020).
31. S. Kim, T. Tachikawa, M. Fujitsuka, and T. Majima, “Far-Red Fluorescence Probe for Monitoring Singlet Oxygen during Photodynamic Therapy,” Journal of the American Chemical Society 136(33), 11707–11715 (2014).
32. H. Gunduz, S. Kolemen, and E. U. Akkaya, “Singlet oxygen probes: Diversity in signal generation mechanisms yields a larger color palette,” Coordination Chemistry Reviews 429, 213641 (2021).
33. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius, and P. R. Ogilby, “Singlet Oxygen Sensor Green®: Photochemical Behavior in Solution and in a Mammalian Cell,” Photochemistry and Photobiology 87, 671–679 (2011).
34. P. Nath, S. S. Hamadna, L. Karamchand, J. Foster, R. Kopelman, J. G. Amar, and A. Ray, “Intracellular detection of singlet oxygen using fluorescent nanosensors,” Analyst 146(12), 3933–3941 (2021).
35. Z. Kadhem, S. Alkafeef, and L. Benov, “Singlet oxygen detection in vivo is hindered by nonspecific SOSG staining,” Scientific Reports 14(1), 20669 (2024).
36. A. Prasad, M. Sedlářová, and P. Pospíšil, “Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms,” Scientific Reports 8(1), 13685 (2018).
37. I. Makovik, A. Vinokurov, A. Dunaev, E. Rafailov, and V. Dremin, “Efficiency of direct photoinduced generation of singlet oxygen at different wavelengths, power density and exposure time of laser irradiation,” Analyst 148(15), 3559–3564 (2023).
38. R. Ruiz-González, R. Bresolí-Obach, Ò. Gulías, M. Agut, H. Savoie, R. W. Boyle, S. Nonell, and F. Giuntini, “NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen,” Angewandte Chemie International Edition 56(11), 2885–2888 (2017).
39. S. K. Pedersen, J. Holmehave, F. H. Blaikie, A. Gollmer, T. Breitenbach, H. H. Jensen, and P. R. Ogilby, “Aarhus Sensor Green: A Fluorescent Probe for Singlet Oxygen,” The Journal of Organic Chemistry 79(7), 3079–3087 (2014).
40. T. Entradas, S. Waldron, and M. Volk, “The detection sensitivity of commonly used singlet oxygen probes in aqueous environments,” Journal of Photochemistry and Photobiology B: Biology 204, 111787 (2020).
41. T. Takajo, K. Anzai, “Is There a Simple and Easy Way to Detect Singlet Oxygen? Comparison of Methods for Detecting Singlet Oxygen and Application to Measure Scavenging Activity of Various Compounds,” Archives of Pharmacology and Therapeutics 2(2), (2020).
42. K. Hajdu, A. Ur Rehman, I. Vass, and L. Nagy, “Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material,” Materials 11(1), 28 (2017).
43. Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
44. D. K. Yadav, P. Pospíšil, “Evidence on the Formation of Singlet Oxygen in the Donor Side Photoinhibition of Photosystem II: EPR Spin-Trapping Study,” PLoS ONE 7(9), e45883 (2012).
45. E. Koh, R. Fluhr, “Singlet oxygen detection in biological systems: Uses and limitations,” Plant Signaling & Behavior 11(7), e1192742 (2016).
46. A. Mor, E. Koh, L. Weiner, S. Rosenwasser, H. Sibony-Benyamini, and R. Fluhr, “Singlet Oxygen Signatures Are Detected Independent of Light or Chloroplasts in Response to Multiple Stresses,” Plant Physiology 165(1), 249–261 (2014).
47. D. M. Hodges, J. M. DeLong, C. F. Forney, and R. K. Prange, “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds,” Planta 207(4), 604–611 (1999).
48. C. Triantaphylidès, M. Krischke, F. A. Hoeberichts, B. Ksas, G. Gresser, M. Havaux, F. Van Breusegem, and M. J. Mueller, “Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants,” Plant Physiology 148(2), 960–968 (2008).
Сontact
34 Moskovskoe shosse, Samara, 443086, Russian Federation
Email: j-bpe@ssau.ru
Phone: +7-846-267-4550
© 2014-2025 J-BPE















