Synthesis of glauconite composites and study of their antibacterial activity
Paper #3125 received 2016.11.19; revised manuscript received 2016.12.29; accepted for publication 2016.12.30; published online 2016.12.31.
DOI: 10.18287/JBPE16.02.040303
Abstract
Keywords
Full Text:
PDFReferences
1. J. M. Huggett, “Minerals/Glauconites,” in Encyclopedia of Geology, 542–548 (2005).
2. V. Valanciene, R. Siauciunas, and J. Baltusnikaite, “The influence of mineralogical composition on the colour of clay body,” Journal of the European Ceramic Society 30(7), 1609-1617 (2010). Crossref
3. O. A. Hegab, and A. G. Abd El-Wahed, “Origin of the glauconite from the Middle Eocene, Qarara Formation, Egypt,” Journal of African Earth Sciences 123, 21-28 (2016). Crossref
4. L. M. Moretto, E. F. Orsega, and G. A. Mazzocchin, “Spectroscopic methods for the analysis of celadonite and glauconite in Roman green wall paintings,” Journal of Cultural Heritage 12(4), 384-391 (2011). Crossref
5. S. S. Chang, Y. H. Shau, M. K. Wang, C. T. Ku, and P. N. Chiang, “Mineralogy and occurrence of glauconite in central Taiwan,” Applied Clay Science 42(1-2), 74-80 (2008). Crossref
6. G. El-Habaak, M. Askalany, M. Faraghaly, and M. Abdel-Hakeem, “The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt,” Journal of African Earth Sciences 120, 186-197 (2016). Crossref
7. A. V. Voronina, V. S. Semenishchev, A. A. Bykov, M. O. Savchenko, A. S. Kutergin, and T. A Nedobuh, “Approaches to rehabilitation of radioactive contaminated territories,” Journal Of Chemical Technology And Biotechnology 88(9), 1606–1611 (2013). Crossref
8. T. Bajda, and Z. Kłapyta, “Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite,” Applied Clay Science 86, 169-173 (2013). Crossref
9. E. H. Smith, W. Lu, T. Vengris, and R. Binkiene, “Sorption of heavy metals by Lithuanian glauconite,” Water Research 30(12), 2883-2892 (1996). Crossref
10. T. J. Berger, J. A. Spadaro, S. E. Chapin, and R. O. Becker, “Electrically Generated Silver Ions: Quantitative Effects on Bacterial and Mammalian Cells,” Antimicrob Agents Chemotherapy 9(2), 357-358 (1976). Crossref
11. B. Bagchi, S. Kar, S. K. Dey, S. Bhandary, D. Roy, T. K. Mukhopadhyay, S. Das, and P. Nandy, “In situ synthesis and antibacterial activity of copper nanoparticles loaded natural montmorillonite clay based on contact inhibition and ion release,” Colloids Surf B Biointerfaces 108, 358-365 (2013). Crossref
12. D. Avisar, O. Primor, I. Gozlan, and H. Mamane, “Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay,” Water, Air, & Soil Pollution 209(1), 439-450 (2009).
13. J. Wang, J. Hu, and S. Zhang, “Studies on the sorption of tetracycline onto clays and marine sediment from seawater,” Journal of Colloid and Interface Science 349(2), 578-582 (2010). Crossref
14. R. Daghrir, and P. Drogui, “Tetracycline antibiotics in the environment: a review,” Environ. Chem. Lett. 11(3), 209-227 (2013).
15. S. G. Walker, C. A. Flemming, F. G. Ferris, T. J. Beveridge, and G. W. Bailey, “Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution,” Appl Environ Microbiol. 55(11), 2976–2984 (1989).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+