Investigation of albumin-fullerenol interaction using laser correlation spectroscopy: the algorithm

Elina Nepomnyashchaya (Login required)
Peter the Great Saint-Petersburg Polytechnic University, Russia

Ekaterina Savchenko
Peter the Great Saint-Petersburg Polytechnic University, Russia

Elena Velichko
Peter the Great Saint-Petersburg Polytechnic University, Russia

Evgenij Aksenov
Peter the Great Saint-Petersburg Polytechnic University, Russia


Paper #3126 received 2016.11.20; accepted for publication 2016.12.29; published online 2016.12.31.

DOI: 10.18287/JBPE16.02.040309

Abstract

A new algorithm for the solution of the inverse problem of laser correlation spectroscopy is proposed. The algorithm allows the analysis of nanoparticle sizes in polydisperse solutions. Experimental results of the albumin-fullerenol interaction study demonstrating the efficiency of our approach are presented.

Keywords

Tikhonov regularisation; laser correlation spectroscopy; albumin; fullerenol; scattering

Full Text:

PDF

References


1. N. N. Pshenkina, “Serum albumin: structure and carrying function”, Pharmacology 12, 1067–1091 (2011) [in Russian].

2. M. A. Orlova, T. P. Trofimova, A. P. Orlov, O. A. Shatalov, A. A. Svistunov, Yu. K. Napolov, and V. P. Chekhovin, “Fullerene derivatives as modulators for the cell proliferation and apoptosis processes”, Oncohematology 4, 7–10 (2012) [in Russian].

3. L. B. Piotrovsky, M. Yu. Eropkin, E. M. Eropkina, M. A. Dumpis, and O. I. Kiselev, “Mechanisms of biologic action of fullerenes — dependence on aggregate state,” Psychopharmacol. Biol. Narcol. 7(2), 1548–1554 (2007) [in Russian].

4. І. І. Grynyuk, S. V. Prylutska, N. S. Slobodyanik, О. Yu. Chunikhin, and О. P. Matyshevska, “The aggregate state of C60-fullerene in various media,” Biotechnologia Acta 6(6), 71-76 (2013).

5. V. A. Shipelin, E. N. Trushina, L. I. Avren’eva, S. Kh. Soto, S. Yu. Batishcheva, G. Yu. Mal’tsev, I. V. Gmoshinski, S. A. Khotimchenko, and V. A. Tutel’yan, “Toxicological and Sanitary Characteristics of Fullerenol (Hydroxylated Fullerene C60) in 28 Day In Vivo Experiment,” Nanotechnologies in Russia 8(11-12), 799–809 (2013).

6. K. L. Linegar, Applications of Dynamic Light Scattering in Chemical Engineering: Polymers, Proteins, and Liquid Crystals, Thesis submitted to the Faculty of the Graduate School of the University of Maryland (2008).

7. J. Stetefeld, S. A. McKenna, and T. R. Patel, “Dynamic light scattering: a practical guide and applications in biomedical sciences,” Biophys Rev. 8(4), 409–427 (2016).

8. R. Finsy, P. Groen, L. Deriemaeker, E. Geladé, and J. Joosten, “Data analysis of multiangle photon correlation measurements without and with prior knowledge,” Part. Part. Syst. Charact. 9(1-4), 237–251 (1992).

9. R. Finsy, P. Groen, L. Deriemaeker, and M. van Laethem, “Singular value analysis and reconstruction of photon correlation data equidistant in time”, J. Chem. Phys. 91(12), 7374–7383 (1989).

10. R. Finsy, N. Jaeger, R. Sneyers, and E. Gelade, “Particle sizing by photon correlation spectroscopy. part III: Mono and bimodal distributions and data analysis,” Syst. Charact. 9(1-4), 125–137 (1992).

11. M. Shuai, J. Shen, J. C. Thomas, X. Zhu, W. Liu, and X. Sun, “Improved inversion procedure for particle size distribution determination by photon correlation spectroscopy,” J. Appl. Opt. 51(25), 6220–6 (2012).

12. E. K. Nepomniashchaia, E. N. Velichko, and E. T. Aksenov, “Solution of Inverse Problem of Laser Correlation Spectroscopy by Regularization Method,” Humanities & Science University Journal 13, 13–23 (2015).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+