Optical non-invasive diagnostics of microcirculatory-tissue systems of the human body: questions of metrological and instrumentation provision
Paper #3129 received 2016.11.28; accepted for publication 2016.12.29; published online 2016.12.31.
DOI: 10.18287/JBPE16.02.040305
Abstract
Optical techniques are one of the most promising non-invasive technologies for the diagnosis of medical conditions. This work is devoted to the current state of the optical non-invasive diagnostics (OND), especially about instrumentation as well as methodological and metrological provision for this technology. In some details Laser Doppler Flowmetry (LDF) and Fluorescence Spectroscopy (FS) diagnostics methods are considered. The main conclusion is that it is necessary to solve the problems of metrological support OND devices of these types. It is also important to develop a methodology based on diagnostic criteria obtained from a relationship between a number of OND methods and others.
Keywords
Full Text:
PDFReferences
1. V. V. Tuchin (ed.), Handbook on Optical Biomedical Diagnostics, SPIE Press, Bellingham (2002).
2. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans Biomed Eng BME 27(10), 597-604 (1980). Crossref
3. A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical-review of laser Doppler flowmetry,” Journal of Medical Engineering & Technology 14(5), 178-181 (1990). Crossref
4. M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol Health Care 7(2-3), 143-162 (1999).
5. A. I. Krupatkin, and V. V. Sidorov, Laser Doppler flowmetry of Blood Microcirculation, Meditcina-Press, Moscow (2005).
6. M. Bracic, and A. Stefanovska, “Wavelet-based analysis of human blood-flow dynamics,” Bulletin of Mathematical Biology 60(5), 919-935 (1998). Crossref
7. A. V. Tankanag, and N. K. Chemeris, “Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin,” Phys. Med. Biol. 53(21), 5967-5976 (2008).
8. J. R. Lakowicz (ed.), Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers, 3rd ed., Springer, New York (2006). ISBN: 10 0-387-32278-1.
9. M. A. Mycek, and B. W. Pogue (eds.), Handbook of Biomedical Fluorescence, CRC Press, Taylor & Francis (2003). ISBN 978-0-824-70955-6.
10. D. Roblyer, R. A. Schwarz, and R. R. Richards-Kortum, “Fluorescence Spectroscopy,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, (eds.), CRC Press, Taylor & Francis, 217-232, (2011).
11. A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices,” Journal of Biomedical Optics 18(10), 107009 (2013). Crossref
12. A. V. Dunaev, V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, K. S. Litvinova, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow,” Medical Engineering and Physics 37(6), 574-583 (2015). Crossref
13. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37-R61 (2013).
14. V. V. Dremin, and A. V. Dunaev, “How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation,” Journal of Optical Technology 83(1), 43-48 (2016). Crossref
15. I. E. Rafailov, V. V. Dremin, K. S. Litvinova, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Computational model of bladder tissue based on its measured optical properties,” Journal of Biomedical Optics 21(2), 025006 (2016). Crossref
16. I. Rafailov, S. Palmer, K. Litvinova, V. Dremin, A. Dunaev, and G. Nabi, “A novel excitation-emission wavelength model to facilitate the diagnosis of urinary bladder diseases,” Proc. SPIE 9303, 93030W (2015).
17. V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, A. Y. Vinokurov, I. N. Novikova, A. I. Zherebtsova, K. S. Litvinova, A. V. Dunaev, “The development of attenuation compensation models of fluorescence spectroscopy signals,” Proc. SPIE 9917, 99170Y (2016).
18. T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Physics in Medicine and Biology 49(24), 5445-5458 (2004). Crossref
19. I. Fredriksson, M. Larsson, F. Salomonsson, and T. Strömberg, “Improved calibration procedure for laser Doppler perfusion monitors,” Proc. SPIE 7906, 790602 (2011).
20. A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Review of Scientific Instruments 66(11), 5169-5173 (1995). Crossref
21. M. Larsson, W. Steenbergen, and T. Stromberg, “Influence of optical properties and fiber separation on laser Doppler flowmetry,” Journal of Biomedical Optics 7(2), 236-243 (2002). Crossref
22. E. A. Zherebtsov, A. I. Zherebtsova, A. V. Dunaev, and K. V. Podmaster’ev, “Method and device for metrological control of laser Doppler flowmetry devices,” Biomedical Engineering 48(4), 191-195 (2014). Crossref
23. A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Novel measure for the calibration of laser Doppler flowmetry devices,” Proc. SPIE 8936, 89360D (2014).
24. V. V. Dremin, V. V. Sidorov, A. I. Krupatkin, G. R. Galstyan, I. N. Novikova, A. I. Zherebtsova, E. A. Zherebtsov, A. V. Dunaev, Z. N. Abdulvapova, K. S. Litvinova, I. E. Rafailov, S. G. Sokolovski, and E. U. Rafailov, “The blood perfusion and NADH/FAD content combined analysis in patients with diabetes foot,” Proc. SPIE 9698, 969810 (2016).
© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+