Study of blood microcirculation of pancreas in rats with alloxan diabetes by Laser Speckle Contrast Imaging

Polina A. Timoshina (Login required)
Research-Educational Institute of Optics and Biophotonics, Saratov National Research State University, Russia

Alla B. Bucharskaya
Saratov State Medical University, Russia

Denis A. Alexandrov
Saratov State Medical University, Russia

Valery V. Tuchin
Research-Educational Institute of Optics and Biophotonics, Saratov National Research State University, Russia
Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Russia

Paper #3150 received 23 Jan 2017; revised manuscript received 10 Mar 2017; accepted for publication 13 Mar 2017; published online 29 Mar 2017.

DOI: 10.18287/JBPE17.03.020301


The blood microcirculation of the pancreas in rats with diabetes was studied using Laser Speckle Contrast Imaging (LSCI). The impact on blood flow of x-ray contrast “OmnipaqueTM-300” (n = 1.438) and aqueous solution of “OmnipaqueTM-300” (n = 1.407) used as optical clearing agents (OCAs) was also investigated. The alloxan induced animal model of diabetes was exploited. The results obtained in the study of blood microcirculation disorders of pancreas in diabetes and under topical application of optical clearing agents show that disease development in animals causes changes in the microcirculatory system response to application of “OmnipaqueTM-300” solutions.


speckle; blood flow; speckle contrast; diabet

Full Text:



1. N. A. Palchikova, V. G. Selyatitskaya, and Y. P. Shorin, “A quantitative assessment of the sensitivity of the experimental animals to diabetogenic action of alloxan,” Problems of Endocrinology, Russia, 65-68 (1987).

2. B. B. Tripathy (ed.), RSSDI: Textbook of Diabetes Mellitus, 2nd ed., Jaypee Brothers Medical Publishers, New Delhi (2012). ISBN: 9789350254899.

3. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, “Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin,” Journal of Biophotonics 8(4), 332-346 (2015).

4. P. O. Bonetti, L. O. Lerman, and A. Lerman, “Endothelial dysfunction: a marker of atherosclerotic risk,” Arterioscler. Thromb. Vasc. Biol. 23(2), 168–175 (2003).

5. V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics. Methods, 2nd ed., SPIE Press, Bellingham, USA (2016). ISBN: 9781628419122.

6. V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garhöfer, M. Gröschl, R. A. Leitgeb, and R. M. Werkmeister, “Measurement of the total retinal blood flow using dual beam Fourier-Domain Doppler Optical Coherence Tomography with orthogonal detection planes,” Biomed. Opt. Express 5(2), 630-642 (2014).

7. Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, and J. U. Kang, “Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18(11), 111404 (2013).

8. Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochemistry and Photobiology 67(1), 56-60 (1998).

9. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 35-66 (2001).

10. K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput. 50(6), 547-558 (2012).

11. D. A. Zimnyakov, O. V. Ushakova, D. J. Briers, and V. V. Tuchin, Speckle Technologies for Monitoring and Imaging of Tissues and Tissue-Like Phantoms, 2nd ed., V. V. Tuchin (ed.), Handbook of Optical Biomedical Diagnostics, vol. 2: Methods, SPIE Press, Bellingham, USA (2016).

12. I. Sigal, R. Gad, A. M. Caravaca-Aguirre, Y. Atchia, D. B. Conkey, R. Piestun, and O. Levi, “Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging,” Biomed. Opt. Express. 5(1), 123-134 (2014).

13. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195-201 (2001).

14. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367-377 (2012).

15. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824-1826 (2006).

16. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559-564 (2003).

17. Х. Cheng, Y. Yan, and T. Q. Duong, “Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method,” Proc. SPIE 7163, 716304 (2009).

18. R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express, 6(6), 1977-1989 (2015).

19. A. I. Srienc, Z. L. Kurth-Nelson and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Frontiers in Neuroenergetics 2(128), (2010).

20. H. Cheng, Q. Luo, S. Zeng, S. Chen, W. Luo, and H. Gong, “Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43(31), 5772-5777 (2004).

21. D. Zhu., K. Larin., Q. Luо, and V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732-757 (2013).

22. Z. Wang, Q. Luo, H. Cheng, W. Luo, and Q. Lu, “Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging,” Nat. Sci. 13(7), 522-527 (2003).

23. V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, H. Oh, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc SPIE 7898, 78980Z (2011).

24. J. D. Briers, and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174-179 (1996).

25. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt. 52(7), 64-71 (2013).

26. R. Bonner, and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097-2107 (1981).

27. K. Khaksari, and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J.Biomed. Opt. 21(7), 076001 (2016).

28. K. Khaksari, and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016).

29. D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu., “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagnosis and Photodynamic Therapy 13, 1-9 (2016).

30. A. Nadort, K. Kalkman, T. G. van Leeuwen, and D. J. Faber, “Quantitative blood flow velocity imaging using laser speckle flowmetry,” Scientific Reports 6(1), 25258 (2016).

31. A. Bykov, T. Hautala, M. Kinnunen, and I. Meglinski, “Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage,” Journal of Biophotonics 9(3), 270-275 (2016).

32. A. Sdobnov, M. E. Darvin, J. Lademann, and V. Tuchin, “A comparative study of ex vivo skin optical clearing using two-photon microscopy,” J. Biophotonics, 1-9 (2017).

33. P. A. Timoshina, E. M. Zinchenko, D. K. Tuchina, M. M. Sagatova, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing,” Proc. of SPIE, to be published.

34. Omnipaque™ (2015).

35. M. P. Longinotti, J. A. T. González, and H. R. Corti, “Concentration and temperature dependence of the viscosity of polyol aqueous solutions,” Cryobiology 69(1), 84-90 (2014).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+