Double-channel fluorimeter with pulsed excitation of advanced glycation end products in skin

Vladimir N. Grishanov (Login required)
Samara National Research University, Russia

Victor S. Kulikov
Samara National Research University, Russia

Konstantin V. Cherepanov
Samara National Research University, Russia

Paper #3274 received 15 Jan 2018; revised manuscript received 7 Mar 2018; accepted for publication 12 Mar 2018; published online 31 Mar 2018. [Special Section. Workshop “Biophotonics” of the XV all-Russian Youth Samara conference-contest on optics and laser physics].

DOI: 10.18287/JBPE18.04.010506


A double-channel diagnostic fluorimeter operating in pulsed mode for in vivo assessment of the content of advanced glycation end products (AGEs) in skin by the autofluorescence integral intensity in the visible spectral region is developed. To excite the fluorescence we use a light-emitting diode with the peak wavelength 365 nm. A green light-emitting diode and an additional photodetection channel are intended to allow for the skin phototype of the patient. The fluorimeter analogue electronics comprises two photodetection channels based on silicon photodiodes. The accepted noise-suppressing circuitry solutions reduce the effect of sun and illumination lamp background light on the digital signal at the output of the 10-bit ADC to the one-bit level in both channels. The digital part of the fluorimeter is based on the Arduino platform. The software controls the operation modes of the fluorimeter, provides the quantitative processing of results, the diagnostic data storage and visualization. The experimental studies demonstrated the capabilities of revealing age-related changes in the skin.


skin autofluorescence; fluorimeter; advanced glycation end products; medical diagnostics

Full Text:



1. R. V. Golubev, G. V. Papayan, A. A. Glazunova, N. Yu. Korosteleva, N. N. Petrishchev, and A. V. Smirnov, “Study of skin autofluorescence for determining the content of glycation end products in patients under chronic haemodialysis,” Terapevticheskii arkhiv 88(6), 65–72 (2016) [in Russian].

2. D. A. Rogatkin, O. A. Prisnyakova, L. G. Moiseeva, and A. S. Cherkasov, “Analysis of the accuracy of clinical laser fluorescence diagnostics,” Measurement Technique 41(7), 670-674 (1998). Crossref

3. I. A. Novikov, Ya. O. Grusha, and N. P. Kiryushchenkova, “Increasing the efficiency of fluorescence diagnostics of skin and mucosa neoplasms in ophthalmic oncology,” Vestnik RAMN 10, 62-69 (2012) [in Russian].

4. A. V. Dunaev, V. V. Dryomin, E. A. Zherebtsov, S. G. Palmer, S. G. Sokolovskiy, and E. U. Rafailov, “Analysis of individual variability of parameters in laser fluorescence diagnostics,” Biotekhnosfera 2(26), 39–47 (2013) [in Russian].

5. R. B. Blyumin, E. M. Naumova, and A. A. Khadartsev, “Technologies of non-contact diagnostics,” Vestnik novykh meditsinskikh tekhnologiy ХV(4), 146–149 (2008) [in Russian].

6. R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation end product accumulation,” Diabetologia 47(7), 1324–1330 (2004). Crossref

7. D. J. Mulder, P. L. van Haelst, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in acute myocardial infarction and is associated with the one-year incidence of major adverse cardiac events,” Netherlands Heart Journal 17(4), 162–168 (2009). Crossref

8. R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” Journal of the American Society of Nephrology 16(12), 3687–3693 (2005). Crossref

9. G. V. Papayan, N. N. Petrishchev, E. V. Krylova, K. Uk, S. V. Kim, V. B. Berezin, and B. Soo-Jin, “Method of estimating the biological age of skin by means of a fluorescence multispectral video dermatoscope,” Journal of Optical Technology 77(2), 126-131 (2010). Crossref

10. M. S. Ahmad, T. Kimhofer, S. Ahmad, M. N. AlAma, H. H. Mosli, S. I. Hindawi, D. O. Mook-Kanamori, K. Šebeková, Z. A. Damanhouri, and E. Holmes, “Ethnicity and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus,” PLoS One 12(9), e0185175 (2017). Crossref

11. K. Uk, V. B. Berezin, G. V. Papayan, N. N. Petrishchev, and M. M. Galagudza, “Spectrometer for fluorescence-reflection biomedical research,” Journal of Optical Technology 80(1), 40-48 (2013). Crossref

12. N. N. Bulgakova, V. V. Smirnov, V. I. Fabelinskii, A. G. Fedotov, and S. V. Shchichkin, “Spectral fluorescence colposcope,” Biomeditsinskaya radioelektronika 4, 42–49 (2013) [in Russian].

13. D. V. Kornilin, and V. N. Grishanov, “Portable fluorescence meter for medical applications,” Proceedings of SPIE 9887, 98871N (2016). Crossref

14. D. V. Kornilin, V. N. Grishanov, V. P. Zakharov, and D. S. Burkov, “Portable fluorescence meter with reference backscattering channel,” Proceedings of SPIE 9961, 99610C (2016). Crossref

15. O. I. Kozlov, E. A. Zherebtsov, A. I. Zherebtsova, V. V. Dryomin, and A. V. Dunaev, “Laser Doppler flowmetry method and device for recording the intensity of the skin blood flow components,” Biomeditsinskaya radioelektronika 6, 68–75 (2017) [in Russian].

16. I. A. Nakhaeva, O. A. Zyuryukina, M. R. Mohammed, and Yu. P. Sinichkin, “The effect of external mechanical compression on in vivo water content in human skin,” Optics and Spectroscopy 118(5), 834-840 (2015). Crossref

17. I. A. Nakhaeva, M. R. Mohammed, O. A. Zyuryukina, and Yu. P. Sinichkin, “The effect of an external mechanical compression on in vivo optical properties of human skin,” Optics and Spectroscopy 117(3), 506-512 (2014). Crossref

18. Y. Wang, L. Zhang, L. Zhu, Y. Liu, G. Zhang, and A. Wang, “A trifurcated fiber-optic probe based optical system designed for AGEs measurement,” Proceedings of SPIE 8329, 832908 (2012). Crossref

19. G. T. Petrovsky (Ed.), Coloured Optical Glass and Special Glasses. A Catalogue, Dom optiki, Мoscow (1990) [in Russian].

20. V. A. Petin, Project Using Arduino Controller, BKhV Peterburg, Saint-Petersburg (2014) [in Russian].

21. G. Petin, “Key synchronous detector,” Skhemotekhnika 3, 14–15 (2003) [in Russian].

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+