Thermal effect in laser perforation of liver

Olga I. Baum (Login required)
Institute of Photonic Technologies, Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of Sciences, Moscow (Troitsk), Russia

Alexander K. Dmitriev
Institute of Photonic Technologies, Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of Sciences, Moscow (Troitsk), Russia

Vladimir N. Kortunov
Institute of Photonic Technologies, Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of Sciences, Moscow (Troitsk), Russia

Olga A. Tiflova
Institute of Photonic Technologies, Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of Sciences, Moscow (Troitsk), Russia

Valery A. Ulyanov
Institute of Photonic Technologies, Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of Sciences, Moscow (Troitsk), Russia


Paper #3288 received 11 Apr 2018; revised manuscript received 25 May 2018; accepted for publication 25 May 2018; published online 17 Jun 2018.

DOI: 10.18287/JBPE18.04.020302

Abstract

One of the trends in the development of modern regeneration medicine is the application of high-intensity laser radiation for deep perforation of biological tissues, stimulating the regeneration of structure and functions of the pathologically changed tissues. In the paper, the possibility to control the location and parameters of the biotissue thermal stimulation zones is studied theoretically and experimentally, depending on the conditions of laser perforation in application to the liver laser-induced regeneration problem. The results of numerical simulation revealed the basic trends in the behaviour of the thermal stimulation zone, which are in good agreement with the experimental data on laser perforation of soft biotissues ex vivo using an optical fibre.

Keywords

fibre laser; perforation; liver; regeneration; thermal fields

Full Text:

PDF

References


1. I. I. Berishvili, Transmyocardial Laser Revascularisation, GEOS, Moscow, Russia (2016) [in Russian]. ISBN 978-5-89118-703-0

2. X. M. Mueller, H. T. Tevaearai, C. Y. Genton, P. Chaubert, and L. K von Segesser, “Are there vascular density gradients along myocardial laser channels?” The Annals of Thoracic Surgery 68(1), 125-129 (1999). Crossref

3. X. M. Mueller, H. T. Tevaearai, C. Y. Genton, P. Chaubert, and L. K von Segesser, “Improved neoangiogenesis in transmyocardial laser revascularization combined with angiogenic adjunct in a pig model,” Clinical Science 99(6), 535-540 (2000). Crossref

4. D. I. Alyokhin, A. A. Fokin, “Prospects of using high-intensity laser radiation for the treatment of chronical ischemia of extremities,” Patologiya krovoobrashcheniya i kardiokhirurgiya 2, 88-92 (2005) [in Russian].

5. S. V. Kapralov, I. A. Mel’nikova, U. G. Shapkin, and V. V. Alipov, “Experimental modelling of laser fenestration of liver,” Byulleten’ meditsinskikh Internet-konferentsii 1(2), 47 (2011) [in Russian].

6. I. A. Shved, T. E. Vladimirskaya, A. V. Vorobey, O. P. Shorez, S. V. Alexandrov, and A. C. Shuleiko, “Liver tissue regeneration after laser coagulation,” Zdravookhraneniye (Belarus) 3, 4-8 (2014) [in Russian].

7. L. Lamalice, F. Le Boeuf, and J. Huot, “Endothelial cell migration during angiogenesis,” Circulation Research 100(6), 782-794 (2007). Crossref

8. A. Briolay, R. Jaafar, G. Nemoz, and L. Bessueille, “Myogenic differentiation and lipid-raft composition L6 skeletal muscle cells are modulated by PUFAs,” Biochimica et Biophysica Acta (BBA) – Biomembranes 1828(2), 602-613 (2013). Crossref

9. A. Dolganiuc, “Role of lipid rafts in liver health and disease,” Would Journal of Gastroenterology 17(20), 2520-2535 (2011). Crossref

10. M. Troyanova-Wood, J. D. Musick, B. L. Ibey, R. J. Thomas, and H. T. Beier, “Observation of changes in membrane fluidity after infrared laser stimulation using a polarity-sensitive fluorescent probe,” Proceeding of SPIE 8941, 89410I (2014). Crossref

11. L. Jin, C. Millard, J. P. Wuskell, H. A. Clark, and L. M. Loew, “Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics,” Biophysical journal: biophysical letters 89(1), L04-L06 (2005). Crossref

12. A. J. Garcia-Saez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” Journal of Biological Chemistry 282(46), 33537–33544 (2007). Crossref

13. G. Muller, K. Dorschel, and H. Kar, “Biophysics of photoablation process,” Lasers in Medical Science 6(3), 241-254 (1991). Crossref

14. N. N. Kalitkin, Numerical Methods, Nauka, Moscow, Russia (1978) [in Russian].

15. O. I. Baum, “Temperature control system for laser reshaping of nasal septum,” Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie 58(10), 847-854 (2015) [in Russian]. Crossref

16. O. I. Baum, Y. M. Soshnikova, E. N. Sobol, A. Ya. Korneychuk, M. V. Obrezkova, V. M. Svistushkin, O. K. Timofeeva, and V. V. Lunin, “Laser reshaping of costal cartilage for transplantation,” Lasers in surgery and medicine 43(6), 511-515 (2011). Crossref

17. A. V. Yuzhakov, A. P. Sviridov, E. M. Shcherbakov, O. I. Baum, and E. N. Sobol, “Optical properties of costal cartilage and their variation in the process of non-destructive action of laser radiation with the wavelength 1.56 μm,” Quantum Electronics 44(1), 65 (2014). Crossref

18. O. I. Baum, E. N. Sobol, A. V. Bolshunov, A. A. Fedorov, O. V. Khomchik, A. I. Omelchenko, and E. M. Shcherbakov, “Microstructural changes in sclera under thermo-mechanical effect of 1.56 µm laser radiation increasing transscleral humor outflow,” Lasers in surgery and medicine 46(1), 46-53 (2014). Crossref

19. O. Baum, S. Wachsmann-Hogiu, T. Milner, and E. Sobol, “Laser-assisted formation of micropores and nanobubbles in sclera promote stable normalization of intraocular pressure,” Laser Physics Letters 14(6), 065601 (2017). Crossref

20. E. Sobol, A. Shekhter, A. Baskov, O. Baum, I. Borchshenko, V. Golubev, A. Guller, I. Kolyshev, A. Omeltchenko, A. Sviridov, and O. Zakharkina, “Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation,” Proceeding of SPIE 7179, 71790B (2009). Crossref

21. E. Sobol, A. Shekhter, A. Guller, O. Baum, and A. Baskov, “Laser-induced regeneration of cartilage,” Journal of Biomedical Optics 16(8), 080902 (2011). Crossref

22. E. Sobol, O. Baum, A. Shekhter, S. Wachsmann-Hogiu, A. Shnirelman, Y. Alexandrovskaya, I. Sadovskyy, and V. Vinokur, “Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing,” Journal of Biomedical Optics 22(9), 091515 (2017). Crossref

23. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, “Interaction of Laser Radiation with Matter (Power Optics),” Lecture Notes. Part II. Laser Heating and Material Destruction, V. P. Veyko (Ed.), ITMO, Saint-Petersburg (2006) [in Russian].






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+