Miniature optical fiber sensors using surface enhanced Raman spectroscopy (SERS) for remote biochemical sensing
Paper #3303 received 13 Nov 2018; revised manuscript received 26 Jan 2019; accepted for publication 27 Jan 2019; published online 9 Feb 2019. [Years in Optoacoustics: 70th Anniversary of Prof. Vladimir P. Zharov]
DOI: 10.18287/JBPE19.05.010301
Abstract
In this study, we present facile fabrication of a miniaturized remote sensing SERS platform using highly tunable Nano-Sphere Lithography (NSL) technique. Using 200 μm diameter optical fibers with high numerical aperture (0.5NA), the SERS enhancement of remote sensing was found to be 98% of direct sensing configuration. Standard silica optical fibers were used for remote sensing using SERS without additional need of optical filtering to mitigate fluorescence and Raman background of these fibers which allows fabrication of miniaturized remote sensing platforms that can be used for remote biochemical sensing.
Keywords
Full Text:
PDFReferences
1. C. V Raman, K. S. Krishnan, “A New Type of Secondary Radiation,” Nature 121(3048), 501-502 (1928). Crossref
2. X. Fan, I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nature Photonics 5(10), 591-597 (2011). Crossref
3. C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Analytical Chemistry 79(21), 8185-8189 (2007). Crossref
4. S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, C. W. O. Sol, I. Papakonstantinou, and I. P. Parkin, “Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes,” Nanoscale 9(42), 16459-16466 (2017). Crossref
5. K. A. Esmonde-White, M. Cuellar, C. Uerpmann, B. Lenain, and I. R. Lewis, “Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing,” Analytical Bioanalytical Chemistry 409(3), 637-649 (2017). Crossref
6. M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Physics in Medicine and Biology 61(23), R370–R400 (2016). Crossref
7. I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Laser & Photonics Reviews 7(5), 698-731 (2013). Crossref
8. L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technology Letters 26(13), 1299-1302 (2014). Crossref
9. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Optics Letters 31(12), 1911-1913 (2006). Crossref
10. E. C. Le Ru, E. J. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” The Journal of Physical Chemistry C 111(37), 13794-13803 (2007). Crossref
11. K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Applied Spectroscopy 52(12), 1493-1497 (1998). Crossref
12. P. Mosier-Boss, “Review of SERS Substrates for Chemical Sensing,” Nanomaterials 7(6), 142 (2017). Crossref
13. B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High-performance SERS substrates: Advances and challenges,” MRS Bulletin 38(8), 615-624 (2013). Crossref
14. L. Yang, P. Li, and J. Liu, “Progress in multifunctional surface-enhanced Raman scattering substrate for detection,” RSC Advances 4(91), 49635-49646 (2014). Crossref
15. J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13(3), 1553-1558 (1995). Crossref
16. P. Colson, C. Henrist, and R. Cloots, “Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials,” Journal of Nanomaterials 2013, 1-19 (2013). Crossref
17. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Introductory Lecture : Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discussions 132, 9-26 (2006). Crossref
18. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” The Journal of Physical Chemistry B 107(30), 7337-7342 (2003). Crossref
19. D. J. White, and P. R. Stoddart, “Nanostructured optical fiber with surface-enhanced Raman scattering functionality,” Optics Letters 30(6), 598-600 (2005). Crossref
20. J. S. Hartley, S. Juodkazis, and P. R. Stoddart, “Optical fibers for miniaturized surface-enhanced Raman-scattering probes,” Applied Optics 52(34), 8388-93 (2013). Crossref
21. Y. Liu, Z. Huang, F. Zhou, X. Lei, B. Yao, G. Meng, and Q. Mao, “Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus,” Nanoscale 8(20), 10607-10614 (2016). Crossref
22. Z. Yin, Y. Geng, Q. Xie, X. Hong, X. Tan, Y. Chen, L. Wang, W. Wang, and X. Li, “Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering,” Applied Optics 55(20), 5408-5412 (2016). Crossref
23. D. L. Stokes, T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sensors and Actuators B: Chemical 69(1-2), 28-36 (2000). Crossref
24. M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light: Science & Applications 6(5), 1–13 (2017). Crossref
25. G. Quero, G. Zito, S. Managò, F. Galeotti, M. Pisco, A. C. De Luca, and A. Cusano, “Nanosphere lithography on fiber: Towards engineered lab-on-fiber SERS optrodes,” Sensors 18(3), 680 (2018). Crossref
26. X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEEE Proc. - Nanobiotechnology 152(6), 195 (2005). Crossref
27. L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Analytical Chemistry 77(20), 6747-6752 (2005). Crossref
28. A. U. Alam, M. M. R. Howlader, and M. J. Deen, “The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass,” Journal of Micromechanics and Microengineering 24(3), 035010 (2014). Crossref
29. J. F. Rusling, “Minimizing errors in numerical analysis of chemical data,” Journal of Chemical Education 65(10), 863 (1988). Crossref
© 2014-2025 Authors
Public Media Certificate (RUS). 12+