Differentiation of basal cell carcinoma and healthy skin using multispectral modulation autofluorescence imaging: A pilot study

Nikita V. Chernomyrdin (Login required)
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Bauman Moscow State Technical University, Moscow, Russia

Anastasiya D. Lesnichaya
Bauman Moscow State Technical University, Moscow, Russia

Egor V. Yakovlev
Bauman Moscow State Technical University, Moscow, Russia

Konstantin G. Kudrin
Sechenov University, Moscow, Russia

Olga P. Cherkasova
Institute of Laser Physics of Siberian Branch of RAS, Novosibirsk, Russia

Elena N. Rimskaya
Bauman Moscow State Technical University, Moscow, Russia
Sechenov University, Moscow, Russia

Vladimir N. Kurlov
Institute of Solid State Physics of RAS, Chernogolovka, Moscow Obl., Russia

Valeriy E. Karasik
Bauman Moscow State Technical University, Moscow, Russia

Igor V. Reshetov
Sechenov University, Moscow, Russia

Valery V. Tuchin
Saratov State University, Saratov, Russia
Tomsk State University, Tomsk, Russia
Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia

Kirill I. Zaytsev
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Bauman Moscow State Technical University, Moscow, Russia

Paper #3309 received 17 Dec 2018; accepted for publication 20 Mar 2019; published online 27 Mar 2019.

DOI: 10.18287/JBPE19.05.010302


An approach for differentiating basal cell carcinoma (BCC) and healthy skin by combining a multispectral modulation autofluorescence imaging with the linear discriminant analysis has been proposed. The experimental setup, which employs a 365-nm narrowband excitation, 4 replaceable bandpass filters and a digital camera, has been assembled and applied to study freshly excised samples of BCC. In the experimental setup, modulation of the UV-excitation and demodulation of the visible light images allow for both increasing a signal-to-noise ratio and suppressing a non-fluorescence background in the autofluorescence images of tissues. The observed results demonstrate an ability for distinguishing both ordinary and keratinized BCC from healthy skin justifying the perspectives of the multispectral modulation autofluorescence imaging use for non-invasive and intraoperative diagnosis of BCC and other low-pigmented malignancies of the skin.


multispectral fluorescence imaging; autofluorescence phenomenon; medical diagnosis; basal cell carcinoma; linear discriminant analysis

Full Text:



1. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochemistry and Photobiology 68(5), 603–632 (1998). Crossref

2. S. Andersson-Engels, C. af Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Physics in Medicine & Biology 42(5), 815–824 (1997). Crossref

3. R. Weissleder, M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008). Crossref

4. E. G. Borisova, L. P. Angelova, and E. P. Pavlova, “Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications,” IEEE Journal of Selected Topics in Quantum Electronics 20(2), 211–222 (2014). Crossref

5. I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time-domain fluorescence lifetime imaging,” Journal of Biomedical Optics 10(5), 51403 (2005). Crossref

6. S. Shrestha, B. E. Applegate, J. Park, X. Xiao, P. Pande, and J. A. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Optics Letters 35(15), 2558–2560 (2010). Crossref

7. F. Fereidouni, K. Reitsma, and H. C. Gerritsen, “High speed multispectral fluorescence lifetime imaging,” Optics Express 21(10), 11769–11782 (2013). Crossref

8. O. Gutierrez-Navarro, D. U. Campos-Delgado, E. Arce-Santana, M. O. Mendez, and J. A. Jo, “A fully constrained optimization method for time-resolved multispectral fluorescence lifetime imaging microscopy data unmixing,” IEEE Transactions on Biomedical Engineering 60(6), 1711–1720 (2013). Crossref

9. J. Bec, D. M. Ma, D. R. Yankelevich, J. Liu, W. T. Ferrier, J. Southard, and L. Marcu, “Multispectral fluorescence lifetime imaging system for intravascular diagnostics with ultrasound guidance: In vivo validation in swine arteries,” Journal of Biophotonics 7(5), 281–285 (2014). Crossref

10. S. Cheng, R. M. Cuenca, B. Liu, B. H. Malik, J. M. Jabbour, K. C. Maitland, J. Wright, Y.-S. L. Cheng, and J. A. Jo, “Handheld multispectral fluorescence lifetime imaging system for in vivo applications,” Biomedical Optics Express 5(3), 921–931 (2014). Crossref

11. E. L. Elson, D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). Crossref

12. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). Crossref

13. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). Crossref

14. K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment,” Biophysical Journal 68(2), 694–701 (1995). Crossref

15. G. Tarrach, M. A. Bopp, D. Zeisel, and A. J. Meixner, “Design and construction of a versatile scanning near‐field optical microscope for fluorescence imaging of single molecules,” Review of Scientific Instruments 66(6), 3569–3575 (1995). Crossref

16. L. M. Miller, P. Dumas, N. Jamin, J.-L. Teillaud, J. Miklossy, and L. Forro, “Combining IR spectroscopy with fluorescence imaging in a single microscope: Biomedical applications using a synchrotron infrared source (invited),” Review of Scientific Instruments 73(3), 1357–1360 (2002). Crossref

17. H. Muramatsu, J. M. Kim, S. Sugiyama, and T. Ohtani, “Simultaneous multicolor fluorescence imaging by scanning near-field optical/atomic force microscopy,” Review of Scientific Instruments 74(1), 100–103 (2003). Crossref

18. I. M. Vellekoop, C. M. Aegerter, “Scattered light fluorescence microscopy: Imaging through turbid layers,” Optics Letters 35(8), 1245–1247 (2010). Crossref

19. J. W. Hastings, “Chemistries and colors of bioluminescent reactions: A review,” Gene 173(1), 5–11 (1996). Crossref

20. K. Nikolova, M. Zlatanov, T. Eftimov, D. Brabant, S. Yosifova, E. Halil, G. Antova, and M. Angelova, “Fluoresence spectra from vegetable oils using violet and blue LD/LED exitation and an optical fiber spectrometer,” International Journal of Food Properties 17(6), 1211–1223 (2014). Crossref

21. E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of terahertz radiation on stress-sensitive genes of E.Coli cell,” IEEE Transactions on Terahertz Science and Technology 6(3), 435–441 (2016). Crossref

22. H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers in Medical Science 9(3), 191–201 (1994). Crossref

23. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Journal of Physics D: Applied Physics 38(15), 2543–2555 (2005). Crossref

24. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers in Medical Science 12(1), 63–78 (1992). Crossref

25. R. M. Cothren, M. V Sivak, J. Van Dam, R. E. Petras, M. Fitzmaurice, J. M. Crawford, J. Wu, J. F. Brennan, R. P. Rava, R. Manoharan, and M. S. Feld, “Detection of dysplasia at colonoscopy using laser-induced fluorescence: a blinded study,” Gastrointestinal Endoscopy 44(2), 168–176 (2009). Crossref

26. T. E. Renkoski, B. Banerjee, L. R. Graves, N. S. Rial, S. A. H. Reid, V. L. Tsikitis, V. N. Nfonsam, P. Tiwari, H. Gavini, and U. Utzinger, “Ratio images and ultraviolet C excitation in autofluorescence imaging of neoplasms of the human colon,” Journal of Biomedical Optics 18(1), 16005 (2013). Crossref

27. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001). Crossref

28. T. J. Pfefer, D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka, “Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus,” Lasers in Surgery and Medicine 32(1), 10–16 (2003). Crossref

29. M. Kara, R. S. DaCosta, B. C. Wilson, N. E. Marcon, and J. Bergman, “Autofluorescence-based detection of early neoplasia in patients with Barrett’s esophagus,” Digestive Diseases 22(2), 134–141 (2004). Crossref

30. M. Tatsuta, H. Iishi, M. Ichii, M. Baba, R. Yamamoto, S. Okuda, and K. Kikuchi, “Diagnosis of gastric cancers with fluorescein-labeled monoclonal antibodies to carcinoembryonic antigen,” Lasers in Surgery and Medicine 9(4), 422–426 (1989). Crossref

31. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Physics in Medicine & Biology 35(9), 1317–1334 (1990). Crossref

32. S. D. Kamath, R. A. Bhat, S. Ray, and K. K. Mahato, “Autofluorescence of normal, benign, and malignant ovarian tissues: A pilot study,” Photomedicine and Laser Surgery 27(2), 325–335 (2009). Crossref

33. T. E. Renkoski, K. D. Hatch, and U. Utzinger, “Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data,” Journal of Biomedical Optics 17(3), 36003 (2012). Crossref

34. R. George, M. Michaelides, M. A. Brewer, and U. Utzinger, “Parallel factor analysis of ovarian autofluorescence as a cancer diagnostic,” Lasers in Surgery and Medicine 44(4), 282–295 (2012). Crossref

35. A. A. Potapov, S. A. Goryaynov, V. A. Okhlopkov, L. V. Shishkina, V. B. Loschenov, T. A. Savelieva, D. A. Golbin, A. P. Chumakova, M. F. Goldberg, M. D. Varyukhina, and A. Spallone, “Laser biospectroscopy and 5-ALA fluorescence navigation as a helpful tool in the meningioma resection,” Neurosurgical Review 39(3), 437–447 (2016). Crossref

36. I. A. Shikunova, D. O. Stryukov, S. N. Rossolenko, A. M. Kiselev, and V. N. Kurlov, “Neurosurgery contact handheld probe based on sapphire shaped crystal,” Journal of Crystal Growth 457, 265–269 (2017). Crossref

37. I. A. Shikunova, G. M. Katyba, K. I. Zaytsev, I. N. Dolganova, I. A. Shikunova, N. V. Chernomyrdin, S. O. Yurchenko, G. A. Komandin, I. V. Reshetov, V. V. Nesvizhevsky, and V. N. Kurlov, “Sapphire shaped crystals for waveguiding, sensing, and exposure applications,” Progress in Crystal Growth and Characterization of Materials (2018). Crossref

38. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnology Annual Review 11, 227–256 (2005). Crossref

39. F. Fischer, E. F. Dickson, J. C. Kennedy, and R. H. Pottier, “An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing,” Lasers in Medical Science 16(3), 207–212 (2001). Crossref

40. B. Zhao, Y.-Y. He, “Recent advances in the prevention and treatment of skin cancer using photodynamic therapy,” Expert Review of Anticancer Therapy 10(11), 1797–1809 (2010). Crossref

41. G. Terentyuk, E. Panfilova, V. Khanadeev, D. Chumakov, E. Genina, A. Bashkatov, V. Tuchin, A. Bucharskaya, G. Maslyakova, N. Khlebtsov, and B. Khlebtsov, “Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo,” Nano Research 7(3), 325–337 (2014). Crossref

42. B. Khlebtsov, E. Tuchina, V. Tuchin, and N. Khlebtsov, “Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus,” RSC Advances 5(76), 61639–61649 (2015). Crossref

43. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin., “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Optics Letters 31(24), 3623 (2006). Crossref

44. J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nature Nanotechnology 4(10), 688–694 (2009). Crossref

45. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of indocyanine green fluorescent imaging in surgery,” International Journal of Biomedical Imaging 2012, 940585 (2012). Crossref

46. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nature Communications 8, 15528 (2017). Crossref

47. K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Applied Physics Letters 106(5), 053702 (2015). Crossref

48. S. Andersson-Engels, R. Berg, K. Svanberg, and S. Svanberg, “Multi-colour fluorescence imaging in connection with photodynamic therapy of delta-amino levulinic acid (ALA) sensitised skin malignancies,” Bioimaging 3(3), 134–143 (1995). Crossref

49. G. E. Pierard, C. Pierard-Franchimont, L. Dewalque, C. Charlier, T. Hermanns-Le, S. Pierard, and P. Delvenne, “In vivo skin fluorescence imaging in young Caucasian adults with early malignant melanomas,” Clinical, Cosmetic and Investigational Dermatology 7, 225–230 (2014). Crossref

50. C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” Journal of Biophotonics 7(5), 295–303 (2014). Crossref

51. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 923–929 (1999). Crossref

52. A. M. Wennberg, F. Gudmundson, B. Stenquist, A. Ternesten, L. Mölne, A. Rosén, and O. Larkö, “In vivo detection of basal cell carcinoma using imaging spectroscopy,” Acta Dermato-Venereologica 79(1), 54–61 (1999). Crossref

53. R. Na, I. M. Stender, and H. C. Wulf, “Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence,” Acta Dermato-Venereologica 81(4), 246–249 (2001). Crossref

54. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Fluorescence polarization imaging for delineating nonmelanoma skin cancers,” Optics Letters 29(17), 2010–2012 (2004). Crossref

55. R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional non-linear laser imaging of Basal Cell Carcinoma,” Optics Express 15(16), 10135–10148 (2007). Crossref

56. I. Kopriva, A. Peršin, H. Zorc, A. Pašić, J. Lipozenčić, K. Kostović, and M. Lončarić, “Visualization of basal cell carcinoma by fluorescence diagnosis and independent component analysis,” Photodiagnosis and Photodynamic Therapy 4(3), 190–196 (2007). Crossref

57. T. Gambichler, G. Moussa, and P. Altmeyer, “A pilot study of fluorescence diagnosis of basal cell carcinoma using a digital flash light-based imaging system,” Photodermatology, Photoimmunology & Photomedicine 24(2), 67–71 (2008). Crossref

58. N. P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. S. Elson, M. A. A. Neil, A. C. Chu, P. M. W. French, and G. W. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” British Journal of Dermatology 159(1), 152–161 (2008). Crossref

59. K. I. Zaytsev, A. V. Perchik, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2 - crystals,” Journal of Physics: Conference Series 584(1), 012017 (2015). Crossref

60. N. V. Chernomyrdin, K. I. Zaytsev, A. D. Lesnichaya, K. G. Kudrin, O. P. Cherkasova, V. N. Kurlov, I. A. Shikunova, A. V. Perchik, S. O. Yurchenko, and I. V. Reshetov, “Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin,” Proceeding of SPIE 9976, 99760B (2016). Crossref

61. G. Ziegelberger, “ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 um,” Health Physics 105(3), 271–295 (2013). Crossref

62. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed., SPIE Press, Bellingham, USA (2015).

63. S. Holopainen, F. Manoocheri, and E. Ikonen, “Non-Lambertian behaviour of fluorescence emission from solid amorphous material,” Metrologia 46(4), 197 (2009). Crossref

64. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Applied Optics 28(20), 4286 (1989). Crossref

65. J. Wu, F. Partovi, M. S. Field, and R. P. Rava, “Diffuse reflectance from turbid media: an analytical model of photon migration,” Applied Optics 32(7), 1115 (1993). Crossref

66. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Applied Optics 33(3), 414 (1994). Crossref

67. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Optics Letters 21(2), 158 (1996). Crossref

68. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Reports on Progress in Physics 60(2), 227–292 (1997). Crossref

69. S. C. Gebhart, A. Mahadevan-Jansen, and W.-C. Lin, “Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media,” Applied Optics 44(23), 4884 (2005). Crossref

70. L. G. Coppel, N. Johansson, and M. Neuman, “Angular dependence of fluorescence from turbid media,” Optics Express 23(15), 19552 (2015). Crossref

71. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Applied Optics 32(19), 3585 (1993). Crossref

72. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Applied Optics 35(10), 1780 (1996). Crossref

73. J. Y. Qu, Z. Huang, and J. Hua, “Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media,” Applied Optics 39(19), 3344 (2000). Crossref

74. Q. Zhang, M. G. Müller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Optics Letters 25(19), 1451 (2000). Crossref

75. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Applied Optics 40(25), 4633 (2001). Crossref

76. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Applied Physics Letters 75(12), 1667–1669 (1999). Crossref

77. C. A. Combs, A. Smirnov, D. Chess, D. B. Mcgavern, J. L. Schroeder, J. Riley, S. S. Kang, M. Lugar-Hammer, A. Gandjbakhche, J. R. Knutson, and R. S. Balaban, “Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED),” Journal of Microscopy 241(2), 153–161 (2011). Crossref

78. J. P. Zinter, M. J. Levene, “Maximizing fluorescence collection efficiency in multiphoton microscopy,” Optics Express 19(16), 15348 (2011). Crossref

79. T. Ruckstuhl, D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Optics Express 12(18), 4246 (2004). Crossref

80. J. J. Fisz, “Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: Application to one-photon-excitation fluorescence microscopy,” The Journal of Physical Chemistry A 111(35), 8606–8621 (2007). Crossref

81. J. J. Fisz, “Another treatment of fluorescence polarization microspectroscopy and imaging,” The Journal of Physical Chemistry A 113(15), 3505–3516 (2009). Crossref

82. A. Curtis, K. Calabro, J.-R. Galarneau, I. J. Bigio, and T. Krucker, “Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence Quantitation,” Molecular Imaging and Biology 13(6), 1114–1123 (2011). Crossref

83. J. R. Lakowicz (ed), Principles of Fluorescence Spectroscopy, Springer, Boston, MA, USA (2006).

84. E. Drakaki, C. Dessinioti, A. J. Stratigos, C. Salavastru, and C. Antoniou, “Laser-induced fluorescence made simple: implications for the diagnosis and follow-up monitoring of basal cell carcinoma,” Journal of Biomedical Optics 19(3), 30901 (2014). Crossref

85. E. Mitrani, R. Marks, “Procollagen localisation in normal, premalignant and malignant lesions of the epidermis,” Archives of Dermatological Research 274(1), 21–28 (1982). Crossref

86. J. C. Zhang, H. E. Savage, P. G. Sacks, T. Delohery, R. R. Alfano, A. Katz, and S. P. Schantz, “Innate cellular fluorescence reflects alterations in cellular proliferation,” Lasers in Surgery and Medicine 20(3), 319–331 (1997). Crossref

87. W. Lohmann, M. Nilles, and R. H. Bodeker, “In situ differentiation between nevi and malignant melanomas by fluorescence measurements,” Naturwissenschaften 78(10), 456–457 (1991). Crossref

88. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, and R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proceedings of the National Academy of Sciences 91(21), 10193–10197 (1994). Crossref

89. F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” Journal of Urology 156(5), 1597–1601 (1996). Crossref

90. M. Zellweger, D. Goujon, R. Conde, M. Forrer, H. van den Bergh, and G. Wagnières, “Absolute autofluorescence spectra of human healthy, metaplastic, and early cancerous bronchial tissue in vivo,” Applied Optics 40(22), 3784–3791 (2001). Crossref

91. E. Borisova, P. Troyanova, P. Pavlova, and L. Avramov, “Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy,” Quantum Electronics 38(6), 597 (2008). Crossref

92. Q. Liu, “Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis,” World Journal of Clinical Oncology 2(1), 50–63 (2011). Crossref

93. G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, Wiley, New York, USA (2004).

94. R. R. Anderson, J. A. Parrish, “The optics of human skin,” Journal of Investigative Dermatology 77(1), 13–19 (1981). Crossref

95. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” Journal of Biomedical Optics 13(2), 24012 (2008). Crossref

96. I. Bliznakova, E. Borisova, and L. Avramov, “Laser- and Light-Induced Autofluorescence Spectroscopy of Human Skin in Dependence on Excitation Wavelengths,” Acta Physica Polonica A 112(5), 1131–1136 (2007). Crossref

97. E. Borisova, P. Pavlova, E. Pavlova, P. Troyanova, and L. Avramov, “Optical biopsy of human skin - A tool for cutaneous tumours' diagnosis,” International Journal Bioautomation 16(1), 53–72 (2012).

98. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochemistry and Photobiology 53(6), 777–786 (1991). Crossref

99. R. A. Fischer, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics 7(2), 179–188 (1936). Crossref

100. R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf., “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” Journal of Investigative Dermatology 116(4), 536–540 (2001). Crossref

101. J. Paoli, M. Smedh, A.-M. Wennberg, and M. B. Ericson, “Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics,” Journal of Investigative Dermatology 128(5), 1248–1255 (2008). Crossref

102. R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. A. Neil, K. König, P. M. W. French, A. Chu, G. W. Stamp, and C. Dunsby, “Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels,” Biomedical Optics Express 2(12), 3295 (2011). Crossref

103. D. Göppner, N. Mechow, J. Liebscher, E. Thiel, G. Seewald, H. Gollnick, C. M. Philipp, and K.-H. Schönborn, “Wide-field, high-resolution two-photon tissue mapping of human skin ex vivo,” Medical Laser Application 26(4), 158–165 (2011). Crossref

104. K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proceedings of the National Academy of Sciences 110(38), 15189–15194 (2013). Crossref

105. S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomedical Optics Express 6(1), 98 (2015). Crossref

106. A. Lihachev, A. Derjabo, I. Ferulova, M. Lange, I. Lihacova, and J. Spigulis, “Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera,” Journal of Biomedical Optics 20(12), 120502 (2015). Crossref

107. M. B. Ericson, C. Berndtsson, B. Stenquist, A.-M. Wennberg, O. Larko, and A. Rosen, “Multispectral fluorescence imaging of basal cell carcinoma assisted by image warping,” Proceeding of SPIE 5141, 114–121 (2003). Crossref

108. F. Sinjab, K. Kong, G. Gibson, S. Varma, H. Williams, M. Padgett, and I. Notingher, “Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging,” Biomedical Optics Express 7(8), 2993 (2016). Crossref

109. B. Stenquist, M. B. Ericson, C. Strandeberg, L. Molne, A. Rosen, O. Larko, and A. M. Wennberg, “Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery,” British Journal of Dermatology 154(2), 305–309 (2006). Crossref

110. F. Fischer, E. F. Gudgin Dickson, and R. H. Pottier, “In vivo fluorescence imaging using two excitation and/or emission wavelengths for image contrast enhancement,” Vibrational Spectroscopy 30(2), 131–137 (2002). Crossref

111. M. B. Ericson, J. Uhre, C. Strandeberg, B. Stenquist, O. Larkö, A.-M. Wennberg, and A. Rosén, “Bispectral fluorescence imaging combined with texture analysis and linear discrimination for correlation with histopathologic extent of basal cell carcinoma,” Journal of Biomedical Optics 10(3), 034009 (2005). Crossref

112. N. Zhu, C.-Y. Huang, S. Mondal, S. Gao, C. Huang, V. Gruev, S. Achilefu, and R. Liang, “Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery,” Journal of Biomedical Optics 20(9), 96010 (2015). Crossref

113. R. Chuong, “Mohs surgery. Techniques, indications, applications, and the future,” Journal of Oral and Maxillofacial Surgery 42(4), 274 (1984). Crossref

114. R. S. Kirsner, M. Haiken, and L. D. Garland, “Margin assessment of selected basal cell carcinomas utilizing laser doppler velocimetry,” International Journal of Dermatology 32(4), 290–292 (1993). Crossref

115. G. R. Mikhail, Mohs Micrographic Surgery, W.B. Saunders, Philadelphia, PA, USA (1991).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+