Terahertz optical and mechanical properties of the gelatin-starch-glycerol-bentonite biopolymers

Tianmiao Zhang (Login required)
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

Maria Zakharova
International Scientific and Research Institute of Bioengineering, ITMO University, Saint Petersburg, Russia

Anna Vozianova
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

Aleksandr Podshivalov
International Scientific and Research Institute of Bioengineering, ITMO University, Saint Petersburg, Russia

Maria Fokina
International Scientific and Research Institute of Bioengineering, ITMO University, Saint Petersburg, Russia

Ravshanjon Nazarov
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

Anna Kuzikova
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

Petr Demchenko
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

Mayya Uspenskaya
International Scientific and Research Institute of Bioengineering, ITMO University, Saint Petersburg, Russia

Mikhail Khodzitsky
Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia


Paper #3359 received 1 Apr 2020; revised manuscript received 28 May 2020; accepted for publication 15 Jun 2020; published online 22 Jun 2020.

DOI: 10.18287/JBPE20.06.020304

Abstract

With the fast development of terahertz technology in medical diagnosis and monitoring, it has become important to investigate the application of THz radiation in the cancer treatment assessment during the therapy. In this paper, a buccal drug delivery system is studied as the first step towards this application. The drug delivery system is based on a gelatin-starch biopolymer matrix filled with plasticizing glycerol and various contents of reinforcing particles of bentonite clay. The biopolymers were subjected to morphology analysis using optical microscopy, analysis of mechanical tensile properties, and analysis of terahertz optical properties, followed by a theoretical approach of the experiment. The results show a visible effect of the bentonite content on both of the mechanical and terahertz optical properties of the biopolymer. These findings allow us to confirm the feasibility of using THz radiation for cancer assessment during therapies. The proposed biopolymer also has the potential to be applied as a substrate when carrying out in-vivo optical property measurement of biotissue in terahertz frequency range.

Keywords

biopolymer; terahertz time-domain spectroscopy; effective medium theory; bentonite; drug delivery system; mechanical properties; optical properties

Full Text:

PDF

References


1. A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug invention today 5(2), 157–163 (2013).

2. J.-H. Son, Terahertz biomedical science and technology, CRC Press (2014).

3. C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quantitative imaging in medicine and surgery 2, 33–45 (2012).

4. R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2020).

5. M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” Journal of Biomedical Optics 18(7), 077004 (2013).

6. Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomedical Optics Express 4(8), 1413–1421 (2013).

7. Y. B. Ji, E. S. Lee, S.-H. Kim, J.-H. Son, and T.-I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Optics Express 17(19), 17082–17087 (2009).

8. G. Calixto, J. Bernegossi, B. Fonseca-Santos, and M. Chorilli, “Nanotechnology-based drug delivery systems for treatment of oral cancer: a review,” International journal of nanomedicine 9, 3719 (2014).

9. C. Dianzani, G. P. Zara, G. Maina, P. Pettazzoni, S. Pizzimenti, F. Rossi, C. L. Gigliotti, E. S. Ciamporcero, M. Daga, and G. Barrera, “Drug delivery nanoparticles in skin cancers,” BioMed research international 2014, 895986 (2014).

10. J. H. Han, Innovations in Food Packaging, Elsevier B.V. (2005).

11. D. Verma, E. Fortunati, Biopolymer processing and its composites, Elsevier Ltd (2019).

12. O. Moreno, À. Gil, L. Atarés, and A. Chiralt, “Active starch-gelatin films for shelf-life extension of marinated salmon,” LWT - Food Science and Technology 84, 189–195 (2017).

13. H. Chen, M. Yang, Z. Shan, S. Mansouri, B. K. May, X. Chen, H. Chen, and M. W. Woo, “On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release,” Materials Science and Engineering: C 74, 493–500 (2017).

14. H. Chen, Z. H. Shan, M. W. Woo, and X. D. Chen, “Preparation and characteristic of gelatine/oxidized corn starch and gelatin/corn starch blend microspheres,” International Journal of Biological Macromolecules 94, 326–334 (20170.

15. N. Zhang, H. Liu, L. Yu, X. Liu, L. Zhang, L. Chen, and R. Shanks, “Developing gelatin-starch blends for use as capsule materials,” Carbohydrate Polymers 92(1), 455–461 (2013).

16. O. Moreno, L. Atarés, A. Chiralt, M. C. Cruz-Romero, and J. Kerry, “Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets,” LWT 97, 483–490 (2018).

17. S. Wannaphatchaiyong, P. W. S. Heng, J. Suksaeree, P. Boonme, and W. Pichayakorn, “Lidocaine loaded gelatin/gelatinized tapioca starch films for buccal delivery and the irritancy evaluation using chick chorioallantoic membrane,” Saudi Pharmaceutical Journal 27(8), 1085–1095 (2019).

18. V. A. d. S. Garcia, J. G. Borges, V. B. V. Maciel, M. R. Mazalli, J. d. G. Lapa-Guimaraes, F. M. Vanin, and R. A. de Carvalho, “Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery,” Food Hydrocolloids 79, 127–135 (2018).

19. J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of THz time-domain spectroscopy signals: A study based on lactose,” Optics Communications 366, 386–396 (2016).

20. S. L. Dexheimer, Terahertz spectroscopy: principles and applications, CRC press (2007).

21. D. Swinehart, “The Beer-Lambert law,” Journal of Chemical Education 39(7), 333 (1962).

22. M. Naftaly, R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings of the IEEE 95(8), 1658–1665 (2007).

23. M. Naftaly, Terahertz metrology, Artech House (2015).

24. G. J. Wilmink, B. L. Ibey, B. D. Rivest, J. E. Grundt, W. P. Roach, T. D. Tongue, B. J. Schulkin, N. Laman, X. G. Peralta, C. C. Roth, C. Z. Cerna, B. D. Rivest, J. E. Grundt, and W. P. Roach, “Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues,” Journal of Biomedical Optics 16(4), 047006 (2011).

25. M. Scheller, C. Jansen, and M. Koch, “Applications of effective medium theories in the terahertz regime,” Chapter in Recent Optical and Photonic Technologies, InTech Rijeka, Croatia, 231–250 (2010).

26. V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” Journal of the Optical Society of America A 33(7), 1244–1256 (2016).

27. R. Nazarov, T. Zhang, M. Khodzitsky, and P. Demchenko, “Comparative study of quantitative methods to determine component concentration for water-free biotissue phantom,” SPIE Proceedings 11075, 110750Y (2019).

28. D. Schmidt, M. Schubert, “Anisotropic bruggeman effective medium approaches for slanted columnar thin films,” Journal of Applied Physics 114(8), 083510 (2013).

29. H. Firoozmand, B. S. Murray, and E. Dickinson, “Microstructure and rheology of phaseseparated gels of gelatin + oxidized starch,” Food Hydrocolloids 23(4), 1081–1088 (2009).

30. A. Podshivalov, M. Zakharova, E. Glazacheva, and M. Uspenskaya, “Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties,” Carbohydrate Polymers 157, 1162–1172 (2017).

31. F. Xie, E. Pollet, P. J. Halley, and L. Avérous, “Starch-based nano-biocomposites,” Progress in Polymer Science 38(10–11), 1590–1628 (2013).

32. V. Klimov, Nanoplasmonics, Pan Stanford (2014).

33. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” La Rivista del Nuovo Cimento 34, 435–488 (2011).

34. K. I. Zaytsev, A. A. Gavdush, N. V. Chernomyrdin, and S. O. Yurchenko, “Highly accurate in vivo terahertz spectroscopy of healthy skin: Variation of refractive index and absorption coefficient along the human body,” IEEE Transactions on Terahertz science and Technology 5(5), 817–827 (2015).

35. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” Journal of Molecular Structure 1006(1–3), 41–51 (2011).

36. P. Lopato, T. Chady, “Terahertz detection and identification of defects in layered polymer composites and composite coatings,” Nondestructive Testing and Evaluation 28(1), 28–43 (2013).

37. A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nature communications 7(1), 1–7 (2016).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+