1540 nm LIBS Investigation of Healthy and Pathological Human Nails

Andrey V. Belikov orcid
ITMO University, Saint Petersburg, Russia

Sergey N. Smirnov orcid
ITMO University, Saint Petersburg, Russia

Andstasia D. Tavalinskaya (Login required)
ITMO University, Saint Petersburg, Russia

Victoria S. Pomazanova
ITMO University, Saint Petersburg, Russia


Paper #3369 received 18 May 2020; revised manuscript received 19 Jun 2020; accepted for publication 25 Jun 2020; published online 30 Jun 2020.

DOI: 10.18287/JBPE20.06.020310

Abstract

The paper discusses the possibility of using laser-induced breakdown spectroscopy (LIBS) as a method for the diagnosis of human nail onychomycosis. LIBS spectra obtained with excitation of plasma on the surface of healthy and onychomycotic nails by pulses of Q switched Yb, Er: Glass laser radiation with a wavelength of 1540 nm were compared for the first time. The spectrum of onychomycotic nail contained unique lines additional to characteristic spectral lines of healthy nails. These additional lines disappeared after 90 days of sample storage in air at room temperature 20 ± 3 °C.

Keywords

LIBS; onychomycosis; Yb, Er: Glass laser; nail; diagnostics; spectrum

Full Text:

PDF

References


1. R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61(10), 2324–2334 (2005).

2. J. Thompson, R. C. Wiens, D. A. Cremers, J. Barefield, and C. Wetteland, “The suitability of Laser Induced Breakdown Spectroscopy for determining the compositions of extraterrestrial material,” Lunar and Planetary Science XXXV (2004).

3. D. Body, B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochimica Acta Part B: Atomic Spectroscopy 56(6), 725–736 (2001).

4. R. C. Wiens, S. K. Sharma, J. R. Thompson, A. K. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61(10), 2324–2334 (2005).

5. B. E. Elewski, “Onychomycosis,” American journal of clinical dermatology 1(1), 19–26 (2000).

6. P. Rodgers, M. Bassler, “Treating onychomycosis,” American family physician 63(4), 663–673 (2001).

7. R. K. Scher, A. Tavakkol, B. Sigurgeirsson, D. G. Armstrong, B. C. Markinson, and B. E. Elewski, “Onychomycosis: diagnosis and definition of cure,” Journal of the American Academy of Dermatology 56(6), 939–944 (2007).

8. Yu. V. Sergeev, A. Yu. Sergeev, Onychomycosis. Fungal infections of the nails, Geotar-medicine, Moscow (1998). ISBN 5–88816–040–7 [In Russian].

9. C. Carney, A. Tosti, R. C. Daniel, R. Scher, P. A. Rich, J. DeCoster, and B. E. Elewski, “A new classification system for grading the severity of onychomycosis: Onychomycosis Severity Index,” Archives of dermatology 147(11), 1277–1282 (2011).

10. A. K. Gupta, K. A. Foley, and S. G. Versteeg, “Lasers for onychomycosis: current status,” Journal of cutaneous medicine and surgery 21(2), 114–116 (2017).

11. W. W. Harrison, G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clinica Chimica Acta 36(2), 485–492 (1972).

12. M. Garland, J. S. Morris, B. A. Rosner, M. J. Stampfer, V. L. Spate, C. J. Baskett, W. C. Willett, and D. J. Hunter, “Toenail trace element levels as biomarkers: reproducibility over a 6-year period,” Cancer Epidemiology and Prevention Biomarkers 2(5), 493–497 (1993).

13. D. E. Vance, W. D. Ehmann, and W. R. Markesbery, “Trace element content in fingernails and hair of a nonindustrialized US control population,” Biological trace element research 17(1), 109–121 (1988).

14. M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, “Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails,” Journal of biomedical optics 18(10), 107006 (2013).

15. S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. B. Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers in medical science 26(1), 79–83 (2011).

16. A. P. Flores, A. K. F. Sanchez, A. Villarreal, F. G. R. Sauz, L. P. Cabrera, and T. F. Reyes, “The potential of compact LIBS system with multi-pulse Nd:YAG laser for bacteria identification,” Journal of Biomedical Science and Engineering 8(03), 207 (2015).

17. S Manzoor, L. Ugena, J. Tornero-Lopéz, H. Martín, M. Molina, J. J. Camacho, and J. O. Cáceres, “Laser induced breakdown spectroscopy for the discrimination of Candida strains,” Talanta 155, 101–106 (2016).

18. M. J. Myers, J. D. Myers, B. Guo, C. Yang, C. R. Hardy, J. A. Myers, A. G. Myers, and S. M. Christian, “Non-invasive in-situ detection of malignant skin tissue and other abnormalities using portable LIBS system with fiber spectrometer and eye-safe erbium glass laser,” Proceeding of SPIE 6863, 68630W (2008).

19. J. Taboada, J. M. Taboada, D. J. Stolarski, J. J. Zohner, L. J. Chavey, H. M. Hodnett, G. D. Noojin, R. J. Thomas, S. S. Kumru, and C. P. Cain, “100-megawatt power Q-switched Er-glass laser,” Proceeding of SPIE 6100, 61000B (2006).

20. D. De Luca, I. Delfino, and M. Lepore, “Laser safety standards and measurements of hazard parameters for medical lasers,” International Journal of Optics and Applications 2(6), 80–86 (2012).

21. M. J. Myers, J. D. Myers, J. T. Sarracino, C. R. Hardy, B. Guo, S. M. Christian, J. A. Myers, F. Roth, and A. G. Myers, “LIBS system with compact fiber spectrometer, head mounted spectra display and hand held eye-safe erbium glass laser gun,” Proceeding of SPIE 7578, 75782G (2010).

22. H. A. Harun, R. Zainal, and Y. M. Daud, “Analysing human nails composition by using laser induced breakdown spectroscopy,” Sains Malaysiana 46(1), 75–82 (2017).

23. NIST Atomic Spectra Database Lines Form.

24. M. Kieliszek, A. M. Kot, A. Bzducha-Wróbel, S. BŁażejak, I. Gientka, and A. Kurcz, “Biotechnological use of Candida yeasts in the food industry: a review,” Fungal Biology Reviews 31(4), 185–198 (2017).

25. W. A. Mosher, D. H. Saunders, L. B. Kingery, and R. J. Williams, “Nutritional requirements of the pathogenic mold Trichophyton interdigitale,” Plant Physiology 11(4), 795 (1936).

26. A. J. Pirzada, P. Iqbal, W. Shaikh, T. Kazi, and U. Ghani, “Studies on the elemental composition and anti fungal activity of medicinal plant Lippia nodiflora L against skin mycosis,” Journal of Pakistan Association of Dermatology 15(2), 113–118 (2016).

27. G. A. Marzluf, “Regulation of sulfur and nitrogen metabolism in filamentous fungi,” Annual review of microbiology 47(1), 31–55 (1993).

28. E. Kilinc, B. Buturak, and F. A. Alkan, “Level of Trace Elements in Serum and Toenail Samples of Patients with Onychocryptosis (ingrown toenail) and Onychomycosis,” Journal of Trace Elements in Medicine and Biology 61, 126509 (2020).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+