Study by optical techniques of the dependence of aggregation parameters of human red blood cells on their deformability
Paper #3371 received 19 May 2020; revised manuscript received 15 Jun 2020; accepted for publication 19 Jun 2020; published online 22 Jun 2020.
DOI: 10.18287/JBPE20.06.020305
Abstract
Keywords
Full Text:
PDFReferences
1. V. Leftov, S. Regirer, and N. Shadrina, Blood Rheology, Meditsina (1982) [in Russian].
2. V. V. Tuchin (Ed.), Handbook of Optical Biomedical Diagnostics, Vol. 2, second edition, SPIE PRESS, Bellingham, Washington, USA (2016).
3. N. Firsov, A. Priezzhev, N. Klimova, and A. Tyurina, “Fundamental laws of the deformational behavior of erythrocytes in shear flow,” Journal of Engineering Physics and Thermophysics 79(1), 118–124 (2006).
4. H. Li, L. Lu, X. Li, P. A. Buffet, M. Dao, G. E. Karniadakis, and S. Suresh, “Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders,” Proceedings of the National Academy of Sciences, 115(38), 9574–9579 (2018).
5. O. Baskurt, B. Neu, and H. Meiselman, Red blood cell aggregation, CRC Press (2012).
6. O. Fadyukova, A. Lugovtsov, A. Priezzhev, and V. Koshelev, “Optical study of blood rheological properties for krushinsky–molodkina strain rats with diabetes mellitus and acute disturbances of the cerebral circulation,” Series Physics 17, 111–120 (2017) [in Russian].
7. P. Ermolinskiy, A. Lugovtsov, A. Maslyanitsina, A. Semenov, L. Dyachuk, and A. Priezzhev, “Interaction of erythrocytes in the process of pair aggregation in blood samples from patients with arterial hypertension and healthy donors: measurements with laser tweezers,” Journal of Biomedical Photonics & Engineering 4(3), 030303, (2018).
8. P. Ermolinskiy, A. Lugovtsov, A. Maslyanitsina, A. Semenov, L. Dyachuk, and A. Priezzhev, “In vitro assessment of microrheological properties of erythrocytes in norm and pathology with optical methods,” Series on Biomechanics, 32(3), 20–25 (2018).
9. Yu. Gurfinkel, A. Lugovtsov, P. Ermolinskiy, E. Pavlikova, L. Diachuk, and A. Priezzhev, “Comparative in-vivo and in-vitro study of blood rheological properties in patients with coronary heart disease with laser-optic techniques,” Proceedings of SPIE 11065, 110650U (2019).
10. O. Fadyukova, A. Yu. Tyurina, A. E. Lugovtsov, A. V. Priezzhev, L. A. Andreeva, V. B. Koshelev, and N. F. Myasoedov, “Semax increases erythrocyte deformability in the shearing blood stream in intact rats and rats with cerebral ischemia,” Doklady Biological Sciences 439, 208–211 (2011).
11. O. Baskurt, M.R. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, and H. J. Meiselman, “Comparison of three commercially available ektacytometers with different shearing geometries,” Biorheology 46(3), 251–264 (2009).
12. A. Lugovtsov, Y. I. Gurfinkel, P. B. Ermolinskiy, A. I. Maslyanitsina, L. I. Dyachuk, and A. V. Priezzhev, “Optical assessment of alterations of microrheologic and microcirculation parameters in cardiovascular diseases,” Biomedical Optics Express 10(8), 3974–3986 (2019).
13. K. Lee, M. Kinnunen, M. D. Khokhlova, E. V. Lyubin, A. V. Priezzhev, I. Meglinski, and A. A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” Journal of Biomedical Optics 21(3), 035001 (2016).
14. S. Shin, Y. Yang, and J. Suh, “Measurement of erythrocyte aggregation in a microchip stirring system by light transmission,” Clinical Hemorheology and Microcirculation 41(3), 197–207 (2009).
15. S. Shin, J. Hou, J. Suh, and M. Singh, “Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability,” Clinical Hemorheology and Microcirculation 37(4), 319–28 (2007).
16. A. Abay, G. Simionato, R. Chachanidze, A. Bogdanova, L. Hertz, P. Bianchi, E. van den Akker, M. von Lindern, M. Leonetti, G. Minetti, C. Wagner, and L. Kaestner, “Glutaraldehyde – a subtle tool in the investigation of healthy and pathologic red blood cells,” Frontiers in Physiology 10, 514 (2019).
17. G. Griffiths, “Fixation for fine structure preservation and immucytochemistry”, Chapter in Fine Structure Immunocytochemistry, Springer, 26‐89 (1993).
18. N. Nemeth, F. Kiss, and K. Miszti-Blasius, “Interpretation of osmotic gradient ektacytometry (osmoscan) data: a comparative study for methodological standards,” Scandinavian Journal of Clinical and Laboratory Investigation, 75(3), 213‐222 (2015)
19. Y. Liang, Y. Xiang, J. Lamstein, A. Bezryadina, and Z. Chen, “Cell deformation and assessment with tunable “tug-of-war” optical tweezers,” Conference on Lasers and Electro-Optics, AM1I.4 (2019).
20. R. Huisjes, A. Bogdanova, W. W. van Solinge, R. M. Schiffelers, L. Kaestner, R. van Wijk, “Squeezing for life – properties of red blood cell deformability,” Frontiers in Physiology 9, 514 (2018).
21. P. Snabre, M. Bitbol, and P. Mills, “Cell disaggregation behavior in shear flow,” Biophysical Journal, 51(5), 795–807 (1987).
22. M. Ju, S. S. Ye, H. T. Low, J. Zhang, P. Cabrales, H. L. Leo, and S. Kim, “Effect of deformability difference between two erythrocytes on their aggregation,” Physical Biology 10(3), 036001 (2013).
23. S. Xue, B. Lee, and S. Shin. “Disaggregating shear stress: The roles of cell deformability and fibrinogen concentration,” Clinical Hemorheology and Microcirculation 55(2), 231-240 (2012).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+