Hyperspectral Camera – Attachment for Microscopy

Mohammed M. Hamza
Samara National Research University, Russian Federation

Ali Hamandi
Samara National Research University, Russian Federation

Andrey R. Makarov (Login required)
Samara National Research University, Russian Federation
IPSI RAS – branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russian Federation

Vladimir V. Podlipnov
Samara National Research University, Russian Federation
IPSI RAS – branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russian Federation

Roman V. Skidanov
Samara National Research University, Russian Federation
IPSI RAS – branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russian Federation


Paper #3429 received 24 May 2021; revised manuscript received 25 Sep 2021; accepted for publication 25 Sep 2021; published online 30 Sep 2021.

DOI: 10.18287/JBPE21.07.030405

Abstract

The paper presents a microscope equipped with a hyperspectral ocular nozzle with a phase diffraction grating, which is used as a dispersing element. The spectral range of the device is 400–1000 nm, with the spectral resolution of 5 nm. The paper describes a microscope software that is used to solve problems of spectral analysis.

Keywords

microscopy; hyperspectral imaging; hyperspectral analysis

Full Text:

PDF

References


1. K. S. Tkachenko, “Application of aerospace imagery in hydrobiological research,” Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 14(1), 15–31 (2012) [in Russian].

2. V. S. Putilina, I. V. Galitskaya, and T. I. Yuganova, “Influence of organic substance on heavy metal migration in municipal solid waste disposal sites,” Ecology. Analytical Review 76, State Public Scientific and Technical Library of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2005) [in Russian]. ISBN: 5-94560-091-1.

3. G. Lu, B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical Optics 19(1), 10901 (2014).

4. M. Akiko, “Hyperspectral prism-grating-prism imaging spectrograph,” PhD thesis, University of Oulu (2001).

5. P. Lypaczewski, B. Rivard, G. Lesage, K. Byrne, M. D’Angelo, and R. G. Lee, “Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications,” Minerals 10(5), 473 (2020).

6. S. Ortega, M. Halicek, H. Fabelo, G. M. Callico, and B. Fei, “Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review,” Biomedical Optics Express 11(6), 3195–3233 (2020).

7. I. P. Gurov, A. I. Lopatin, and A. V. Melnikov, “Formation of hyperspectral data on microscopic objects with high degree of spatial non-uniformity of optical density distribution,” Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2(84), 103–107 (2013) [in Russian].

8. M. M. Mazur, Yu. A. Suddenok, and V. N. Shorin, “Dual acousto-optical image monochromator with adjustable width of the hardware function,” Pisma v ZhTF 40(4), 56–62 (2014) [in Russian].

9. A. G. Orlov, V. V. Egorov, A. P. Kalinin, and I. D. Rodionov, “Aviation hyperspectrometer: architecture and method of calculating elements,” in 5th All-Russian Open Annual Conference on the Modern Problems of Remote Sensing of the Earth from Space, 280–287 (2007) [in Russian].

10. V. V. Podlipnov, N. A. Ivliev, and R. V. Skidanov, “A compact imaging hyperspectrometer,” Journal of Physics: Conference Series 13689(2), 022053 (2019).

11. S. B. B. Ahmadi, Y. A. Nanehkaran, and S. Layazali, “Review on hyper-spectral imaging system,” International Journal of Scientific and Engineering Research 4(5), 253–258 (2013).

12. J. Beach, “A richer view of bio structures,” BioOptics World 2, 68–71 (2009).

13. V. Leroi, J.-P. Bibring, and M. Berthe, “MicrOmega a VIS/NIR hyperspectral microscope for in situanalysis in space,” Planetary and Space Science 57(8-9), 1068–1075 (2009).

14. Raspberry Pi Documentation, Description of the operation of GPIO ports on a Raspberry Pi computer (accessed 15.07.2020) [https://www.raspberrypi.com/documentation/computers/os.html].

15. 3967 Microstepping driver with translator, Datasheets Allegro MicroSystems, Worcester, Massachusetts (2002–2003) [https://www.sparkfun.com/datasheets/Robotics/A3967.pdf].

16. Basler ace, User’s manual for USB 3.0 cameras, AW001234 (2015) [https://www.micropticsl.com/wp-content/uploads/2013/09/basler_ace_usb_manual.pdf].

17. E. Myasnikov, “Evaluation of Nonlinear Dimensionality Reduction Techniques for Classification of Hyperspectral Images,” In AIST (Supplement), 147–154 (2018).

18. V. I. Nozdrin, T. A. Belousova, and G. V. Trunova, “Microscopy slides for studying histology,” Catalogue, Retinoids, Moscow (2016). ISBN: 978-5-93118-046-5.

19. L. A. Zherdeva, I. A. Bratchenko, O. O. Myakinin, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, “In vivo hyperspectral imaging and differentiation of skin cancer,” Proceedings of SPIE 10024, 100244G (2016).

20. I. A. Bratchenko, O. O. Myakinin, V. P. Sherendak, P. N. Volkhin, Y. A. Khristoforova, L. A. Bratchenko, D. N. Artemyev, A. A. Moryatov, O. V. Polschikova, A. S. Machikhin, V. E. Pozhar, S. V. Kozlov, and V. P. Zakharov, “In vivo hyperspectral analysis of skin hemoglobin and melanin content for neoplasia detection,” Journal of Biomedical Photonics & Engineering 4(4), 040301 (2018).

21. V. Sherendak, I. A. Bratchenko, O. O. Myakinin, P. Volkhin, Yu. Khristoforova, A. A. Moryatov, A. S. Machikhin, V. E. Pozhar, S. V. Kozlov, and V. P. Zakharov, “Hyperspectral in vivo analysis of normal skin chromophores and visualization of oncological pathologies,” Computer Optics 43(4), 661–670 (2019).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+