Types of Optical Coherence Tomography for Cancer Diagnosis: A Systematic Review

Neha Acharya
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Sindhoora K. Melanthota
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Manoj Khokhar
Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

Shweta Chakrabarti
Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Dharshini Gopal
Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Dhyeya S. Mallya
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Nirmal Mazumder (Login required)
Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Paper #3440 received 28 Jun 2021; revised manuscript received 01 Dec 2021; accepted for publication 21 Dec 2021; published online 4 Feb 2022.

DOI: 10.18287/JBPE22.08.010201


Optical coherence tomography (OCT) is an emerging imaging technique that produces high contrast images that help distinguish different tissue layers by detecting the back-reflected near-infrared light. The technique is used to diagnose various diseases due to high contrast, three-dimensional imaging capability with high resolution, and a fast acquisition speed. The meta-analysis study was performed by the systematic review of literature in PubMed, Web of Science, Scopus, Google Scholar, Embase, and Cochrane Library using search terms relevant to “OCT”, "Carcinoma", and “cancers”. The various applications of different types of OCT are discussed in the detection and diagnosis of various cancers like colorectal cancer, breast cancer, skin cancer, brain cancer, prostate cancer, ovarian cancer and lung cancer.


optical coherence tomography; cancer; tissue imaging

Full Text:



1. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and F. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93(6), 1206–1213 (1996).

2. P. A. Valdés, D. W. Roberts, F. K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” Neurosurgical Focus 40(3), E8 (2016).

3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 24(17), 1221–1223 (1999).

4. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1(9), 970–972 (1995).

5. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).

6. W. Drexler, J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Progress in Retinal and Eye Research 27(1), 45–88 (2008).

7. T. Klein, R. Huber, “High-speed OCT light sources and systems,” Biomedical Optics Express 8(2), 828–859 (2017).

8. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review,” Biomedical Optics Express 8(3), 1838–1873 (2017).

9. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Applied Optics 41(4), 805–812 (2002).

10. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Optics Letters 22(5), 340–342 (1997).

11. J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomedical Optics Express 9(1), 120–130 (2017).

12. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11(22), 2953–2963 (2003).

13. Y. Li, Z. Zhu, J. J. Chen, J. C. Jing, C. H. Sun, S. Kim, P. S. Chung, and Z. Chen, “Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging,” Biomedical Optics Express 10(5), 2419–2429 (2019).

14. P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomedical Optics Express 4(10), 2179–2186 (2013).

15. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss 126, 141–157 (2004).

16. N. Krstajić, C. T. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” Journal of Biomedical Optics 17(7), 071305 (2012).

17. D. E. Fleischer, B. F. Overholt, V. K. Sharma, A. Reymunde, M. B. Kimmey, R. Chuttani, K. J. Chang, R. Muthasamy, C. J. Lightdale, N. Santiago, and D. K. Pleskow, “Endoscopic radiofrequency ablation for Barrett's esophagus: 5-year outcomes from a prospective multicenter trial,” Endoscopy 42(10), 781–789 (2010).

18. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Physics in Medicine & Biology 55(1), 191 (2010).

19. E. S. Hwang, D. Y. Lichtensztajn, S. L. Gomez, B. Fowble, and C. A. Clarke, “Survival after lumpectomy and mastectomy for early stage invasive breast cancer: the effect of age and hormone receptor status,” Cancer 119(7), 1402–1411 (2013).

20. S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, and E. J. Chaney, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Research 75(18), 3706–3712 (2015).

21. J. Wang, Y. Xu, and S. A. Boppart, “Review of optical coherence tomography in oncology,” Journal of Biomedical Optics 22(12), 121711 (2017).

22. K. H. Allison, “Molecular pathology of breast cancer: what a pathologist needs to know,” American Journal of Clinical pathology 138(6), 770–780 (2012).

23. O. A. Catalano, G. L. Horn, A. Signore, C. Iannace, M. Lepore, M. Vangel, A. Luongo, M. Catalano, C. Lehman, M. Salvatore, and A. Soricelli, “PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype,” British Journal of Cancer 116(7), 893–902 (2017).

24. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomedical Optics Express 3(8), 1865–1879 (2012).

25. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Research 75(16), 3236–3245 (2015).

26. E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, and A. Y. Vorontsov, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomedical Optics Express 10(5), 2244–2263 (2019).

27. H. Yang, S. Zhang, P. Liu, L. Cheng, F. Tong, H. Liu, S. Wang, M. Liu, C. Wang, Y. Peng, and F. Xie “Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery,” Cancer 126, 3847–3856 (2020).

28. J. Wang, Y. Xu, K. J. Mesa, F. A. South, E. J. Chaney, D. R. Spillman, R. Barkalifa, M. Marjanovic, P. S. Carney, A. M. Higham, and Z. G. Liu, “Complementary use of polarization-sensitive and standard OCT metrics for enhanced intraoperative differentiation of breast cancer,” Biomedical Optics Express 9(12), 6519–6528 (2018).

29. A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Applied Optics 58(5), A135–A141 (2019).

30. C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Research 70(24), 10071–10079 (2010).

31. K. Dubey, N. Singla, A. Butola, A. Lathe, D. Quaiser, A. Srivastava, D.S. Mehta, and V. Srivastava, “Ensemble classifier for improve diagnosis of the breast cancer using optical coherence tomography and machine learning,” Laser Physics Letters 16(2), 025602 (2019).

32. J. Lindner, K. Hillmann, U. Blume-Peytavi, J. Lademann, A. Lux, A. Stroux, A. Schneider, and N. Garcia Bartels, “Hair shaft abnormalities after chemotherapy and tamoxifen therapy in patients with breast cancer evaluated by optical coherence tomography,” British Journal of Dermatology 167(6), 1272–1278 (2012).

33. M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatologic Surgery 35(6), 965–972 (2009).

34. S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7(1), 17912 (2017).

35. S. Batz, C. Wahrlich, A. Alawi, M. Ulrich, and J. Lademann, “Differentiation of different nonmelanoma skin cancer types using OCT,” Skin Pharmacology and Physiology 31(6), 238–245 (2018).

36. Z. Turani, E. Fatemizadeh, T. Blumetti, S. Daveluy, A. F. Moraes, W. Chen, D. Mehregan, P. E. Andersen, and M. Nasiriavanaki, “Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma,” Cancer Research 79(8), 2021–2030 (2019).

37. D. Tes, A. Aber, M. Zafar, L. Horton, A. Fotouhi, Q. Xu, A. Moiin, A. D. Thompson, T. C. Moraes Pinto Blumetti, S. Daveluy, and W. Chen, “Granular cell tumor imaging using optical coherence tomography,” Biomedical Engineering and Computational Biology 9, 1179597218790250 (2018).

38. A. L. Agero, K. J. Busam, C. Benvenuto-Andrade, A. Scope, M. Gill, A. A Marghoob, S. González, and A. C. Halpern, “Reflectance confocal microscopy of pigmented basal cell carcinoma,” Journal of the American Academy of Dermatology 54(4), 638–643 (2006).

39. S. Seidenari, F. Arginelli, S. Bassoli, J. Cautela, A.M. Cesinaro, M. Guanti, D. Guardoli, C. Magnoni, M. Manfredini, G. Ponti, and K. König, “Diagnosis of BCC by multiphoton laser tomography,” Skin Research and Technology 19(1), e297–e304 (2013).

40. A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Research and Technology 19(1), e10–e19 (2013).

41. C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Research and Technology 20(2), 170–176 (2014).

42. M. Ulrich, T. von Braunmuehl, H. Kurzen, T. Dirschka, C. Kellner, E. Sattler, C. Berking, J. Welzel, and U. Reinhold, “The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study,” British Journal of Dermatology 173(2), 428–435 (2015).

43. T. Marvdashti, L. Duan, S. Z. Aasi, J. Y. Tang, and A. K. Bowden, “Classification of basal cell carcinoma in human skin using machine learning and quantitative features captured by polarization sensitive optical coherence tomography,” Biomedical Optics Express 7(9), 3721–3735 (2016).

44. J. Holmes, T. von Braunmühl, C. Berking, E. Sattler, M. Ulrich, U. Reinhold, H. Kurzen, T. Dirschka, C. Kellner, S. Schuh, and J. Welzel, “Optical coherence tomography of basal cell carcinoma: influence of location, subtype, observer variability and image quality on diagnostic performance,” British Journal of Dermatology 178(5), 1102–1110 (2018).

45. T. von Braunmühl, D. Hartmann, J. K. Tietze, D. Cekovic, C. Kunte, T. Ruzicka, C. Berking, and E. C. Sattler, “Morphologic features of basal cell carcinoma using the en-face mode in frequency domain optical coherence tomography,” Journal of the European Academy of Dermatology and Venereology 30(11), 1919–1925 (2016).

46. J. Gogas, C. Markopoulos, E. Kouskos, H. Gogas, D. Mantas, Z. Antonopoulou, and K. Kontzoglou, “Granular cell tumor of the breast: a rare lesion resembling breast cancer,” European Journal of Gynaecological Oncology 23(4), 333–334 (2002).

47. M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, and K. Hess, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” Journal of Neurosurgery 95(2), 190–198 (2001).

48. N. Sanai, M. Y. Polley, M. W. McDermott, A. T. Parsa, and M. S. Berger, “An extent of resection threshold for newly diagnosed glioblastomas,” Journal of Neurosurgery 115(1), 3–8 (2011).

49. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment,” Technology in Cancer Research & Treatment 13(5), 455–468 (2014).

50. T. Alice, N. Georges, “Medulloblastoma: optimizing care with a multidisciplinary approach,” Journal of Multidisciplinary Healthcare 12, 335–347 (2019).

51. F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Transactions on Medical Imaging 24(10), 1369–1376 (2005).

52. K. S. Yashin, E. B. Kiseleva, A. A. Moiseev, S. S. Kuznetsov, L. B. Timofeeva, N. P. Pavlova, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, E. V. Zagaynova, and N. D. Gladkova, “Quantitative nontumorous and tumorous human brain tissue assessment using microstructural co- and cross-polarized optical coherence tomography,” Scientific Reports 9(1), 2024 (2019).

53. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” NeuroImage: Clinical 2, 549–557 (2013).

54. C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Science Translational Medicine 7(292), 292ra100-292ra100 (2015).

55. K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, A. A. Potapov, and E. V. Zagaynova, “Cross-polarization optical coherence tomography for brain tumor imaging,” Frontiers in Oncology 9, 201 (2019).

56. T. R. Rebbeck, H. T. Lynch, S. L. Neuhausen, S. A. Narod, L. Van’t Veer, J. E. Garber, G. Evans, C. Isaacs, M. B. Daly, E. Matloff, and O. I . Olopade, “Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations,” New England Journal of Medicine 346(21), 1616–1622 (2002).

57. C. St-Pierre, W. J. Madore, E. De Montigny, D. Trudel, C. Boudoux, N. Godbout, A. M. Mes-Masson, K. Rahimi, and F. Leblond, “Dimension reduction technique using a multilayered descriptor for high-precision classification of ovarian cancer tissue using optical coherence tomography: a feasibility study,” Journal of Medical Imaging 4(4), 041306 (2017).

58. T. Wang, Y. Yang, and Q. Zhu, “A three-parameter logistic model to characterize ovarian tissue using polarization-sensitive optical coherence tomography,” Biomedical Optics Express 4(5), 772–777 (2013).

59. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomedical Optics Express, 3(7) 1548–1556 (2012).

60. D. L. Marks, T. S. Ralston, and S. A. Boppart “Data analysis and signal postprocessing for Optical Coherence Tomography,” In Optical Coherence Tomography, W. Drexler, J. G. Fujimoto (eds.), Springer, Berlin, Heidelberg, 405–426 (2008).

61. J. Liu, Y. Li, D. Yang, C. Yang, and L. Mao, “Current state of biomarkers for the diagnosis and assessment of treatment efficacy of prostate cancer,” Discovery Medicine 27(150), 235–243 (2019).

62. J. Wang, J. Ni, J. Beretov, J. Thompson, P. Graham, and Y. Li, “Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer,” Critical Reviews in Oncology/Hematology 145, 102860 (2020).

63. A. Swaan, C. K. Mannaerts, M. J. Scheltema, J. A. Nieuwenhuijzen, C. D. Savci-Heijink, J. J. de la Rosette, R. J. Van Moorselaar, T. G. Van Leeuwen, T. M. De Reijke, and D. M. De Bruin, “Confocal laser endomicroscopy and optical coherence tomography for the diagnosis of prostate cancer: a needle-based, in vivo feasibility study protocol (IDEAL phase 2A),” JMIR Research Protocols 7(5), e132 (2018).

64. B. G. Muller, R. van Kollenburg, A. Swaan, E. Zwartkruis, M. J. Brandt, L. S. Wilk, M. Almasian, A. W. Schreurs, D. J. Faber, L. R. Rozendaal, and A. N. Vis, “Needle-based optical coherence tomography for the detection of prostate cancer: a visual and quantitative analysis in 20 patients,” Journal of Biomedical Optics 23(8), 086001 (2018).

65. J. A. Gardecki, K. Singh, C. L. Wu, and G. J. Tearney, “Imaging the human prostate gland using 1-μm-resolution optical coherence tomography,” Archives of Pathology & Laboratory Medicine 143(3), 314–318 (2019)

66. J. Lopater, P. Colin, F. Beuvon, M. Sibony, E. Dalimier, F. Cornud, and N. B. Delongchamps, “Real-time cancer diagnosis during prostate biopsy: ex vivo evaluation of full-field optical coherence tomography (FFOCT) imaging on biopsy cores,” World Journal of Urology 34(2), 237–243 (2016).

67. B. G. Muller, A. Swaan, D. M. de Bruin, W. van den Bos, A. W. Schreurs, D. J. Faber, E. C. Zwartkruis, L. Rozendaal, A. N. Vis, J. A. Nieuwenhuijzen, and R. J. van Moorselaar, “Customized tool for the validation of optical coherence tomography in differentiation of prostate cancer,” Technology in Cancer Research & Treatment 16(1), 57–65 (2017).

68. A. Goorsenberg, K. A. Kalverda, J. Annema, and P. Bonta, “Advances in optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases,” Respiration 99(3), 190–205 (2020).

69. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Optics Express 1(13), 432–440 (1997).

70. R. G. Michel, G. T. Kinasewitz, K. M. Fung, and J. I. Keddissi, “Optical coherence tomography as an adjunct to flexible bronchoscopy in the diagnosis of lung cancer: a pilot study,” Chest 138(4), 984–988 (2010).

71. R. Wessels, M. van Beurden, D. M. de Bruin, D. J. Faber, A. D. Vincent, J. Sanders, T. G. Van Leeuwen, and T. J. Ruers, “The value of optical coherence tomography in determining surgical margins in squamous cell carcinoma of the vulva: a single-center prospective study,” International Journal of Gynecologic Cancer 25(1), 112–118 (2015).

72. H. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” Journal of Biomedical Optics 17(11), 116006 (2012).

73. L. P. Hariri, M. Mino-Kenudson, M. Lanuti, A. J. Miller, E. J. Mark, and M. J. Suter, “Diagnosing lung carcinomas with optical coherence tomography,” Annals of the American Thoracic Society 12(2), 193–201 (2015).

74. L. P. Hariri, D. C. Adams, M. B. Applegate, A. J. Miller, B. W. Roop, M. Villiger, B. E. Bouma, and M. J. Suter, “Distinguishing tumor from associated fibrosis to increase diagnostic biopsy yield with polarization-sensitive optical coherence tomography,” Clinical Cancer Research 25(17), 5242–5249 (2019).

75. M. Jain, N. Narula, B. Salamoon, M. M. Shevchuk, A. Aggarwal, N. Altorki, B. Stiles, C. Boccara, and S. Mukherjee, “Full-field optical coherence tomography for the analysis of fresh unstained human lobectomy specimens,” Journal of Pathology Informatics 4 (2013).

76. J. N. d’Hooghe, A. W. Goorsenberg, D. M. de Bruin, J. Roelofs, J. T. Annema, and P. I. Bonta, “Optical coherence tomography for identification and quantification of human airway wall layers,” PloS ONE 12(10) e0184145 (2017).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+