Porous Silicon Nanoparticles with Rare Earth as Potential Contrast Agents for MRI and Luminescent Probes for Bioimaging
Paper #3477 received 19 Feb 2022; revised manuscript received 4 Apr 2022; accepted for publication 1 May 2022; published online 18 May 2022.
DOI: 10.18287/JBPE22.08.020304
Abstract
Nanoparticles of porous silicon with incorporated europium and gadolinium ions were prepared by using mechanical grinding of electrochemically grown mesoporous silicon films followed with impregnation with rare earth ions from aqueous solutions. The photoluminescence spectroscopy of europium doped porous silicon nanoparticles allowed us to reveal narrow lines associated with the 5D0→7F4 transitions in Eu3+ ions. Measurements of the proton relaxation in aqueous suspensions of nanoparticles with embedded Gd3+ ions showed an effect of the shortening of both the longitudinal and transverse relaxation times. Potential applications of rare earth doped porous silicon nanoparticles as contrast agents in MRI and fluorescent labels in bioimaging are discussed.
Keywords
Full Text:
PDFReferences
1. J. C. Weinreb, H. C. Redman, “Musculoskeletal System,” Chapter 12 in Magnetic Resonance Imaging of the Body: Advanced Exercises in Diagnostic Radiology Series, J. C. Weinreb, H. C. Redman, Saunders, Philadelphia, 214–259 (1987).
2. S. Aime, A. Barge, C. Cabella, S. G. Crich, and E. Gianolio, “Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates,” Current Pharmaceutical Biotechnology 5(6), 509–518 (2004).
3. A. Y. Louie, M. M. Hüber, E. T. Ahrens, U. Rothbächer, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade, “In vivo visualization of gene expression using magnetic resonance imaging,” Nature Biotechnology 18, 321–325 (2000).
4. O. Salata, “Applications of nanoparticles in biology and medicine”, Journal of Nanobiotechnology 2, 3 (2004).
5. P.-J. Debouttière, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Favre-Réguillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat, and O. Tillement, “Design of Gold Nanoparticles for Magnetic Resonance Imaging,” Advanced Functional Materials 16(18), 2330–2339 (2006).
6. F. Lux, V. L. Tran, E. Thomas et al., “AGuIX® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine,” The British Journal of Radiology 92(1093), 20180365 (2018).
7. J. Morlieras, S. Dufort, L. Sancey, C. Truillet, A. Mignot, F. Rossetti, M. Dentamaro, S. Laurent, L. V. Elst, R. N. Muller, R. Antoine, P. Dugourd, S. Roux, P. Perriat, F. Lux, J.-L. Coll, and O. Tillement, “Functionalization of small rigid platforms with cyclic RGD peptides for targeting tumors overexpressing αvβ3 integrins,” Bioconjugate Chemistry 24(9), 1584–1597 (2013).
8. K. Ishiyama, S. Motoyama, N. Tomura, R. Sashi, H. Imano, J.-I. Ogawa, K. Narita, and J. Watarai, “Visualization of lymphatic basin from the tumor using magnetic resonance lymphography with superparamagnetic iron oxide in patients with thoracic esophageal cancer,” Journal of Computer Assisted Tomography 30(2), 270–275 (2006).
9. A. Tanimoto, S. Kuribayashi, “Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma,” European Journal of Radiology 58(2), 200–216 (2006).
10. Y. V. Kargina, M. B. Gongalsky, A. M. Perepukhov, A. A. Gippius, A. A. Minnekhanov, E. A. Zvereva, A. V. Maximychev, and V. Yu. Timoshenko, “Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications,” Journal of Applied Physics 123(10), 104302 (2018).
11. Y. V. Kargina, A. M. Perepukhov, A. Yu. Kharin, E. A. Zvereva, A. V. Koshelev, S. V. Zinovyev, A. V. Maximychev, A. F. Alykova, N. V. Sharonova, V. P. Zubov, M. V. Gulyaev, Y. A. Pirogov, A. N. Vasiliev, A. A. Ischenko, and V. Yu. Timoshenko, “Silicon nanoparticles prepared by plasma-assisted ablative synthesis: physical properties and potential biomedical applications,” Physica Status Solidi (A) 216(14), 1800897 (2019).
12. Y. V. Kargina, S. V. Zinovyev, A. M. Perepukhov, E. V. Suslova, A. A. Ischenko, and V. Yu. Timoshenko, “Silicon nanoparticles with iron impurities for multifunctional applications,” Functional Materials Letters 13(4), 2040007 (2020).
13. K. N. Raymond, V. C. Pierre, “Next generation, high relaxivity gadolinium MRI agents,” Bioconjugate Chemistry 16(1), 3–8 (2005).
14. Z. Wang, F. Carniato, Y. Xie, Y. Huang, Y. Li, S. He, N. Zang, J. D. Rinehart, M. Botta, and N. C. Gianneschi, “High relaxivity gadolinium-polydopamine nanoparticles,” Small 13(43), 1701830 (2017).
15. M. Engström, A. Klasson, H. Pedersen, C. Vahlberg, P.-O. Käll, and K. Uvdal, “High proton relaxivity for gadolinium oxide nanoparticles,” Magnetic Resonance Materials in Physics, Biology and Medicine 19(4), 180–186 (2006).
16. M. Donmez, H. A. Oktem, and M. D. Yilmaz, “Ratiometric fluorescence detection of an anthrax biomarker with Eu3+-chelated chitosan biopolymers,” Carbohydrate Polymers 180, 226–230 (2018).
17. J. A. Bearden, “X-Ray Wavelengths,” Reviews of Modern Physics 39(1), 78–124 (1967).
18. A. S. Eremina, Y. Kargina, A. Y. Kharin, D. I. Petukhov, and V. Y. Timoshenko, “Mesoporous silicon nanoparticles covered with PEG molecules by mechanical grinding in aqueous suspensions,” Microporous and Mesoporous Materials 331, 111641 (2022).
19. I. N. Ogorodnikov, V. A. Pustovarov, “Linear optical, luminescence and electronic properties of the La2Be2O5 laser crystals doped with Ce3+ or Eu3+,” Journal of Luminescence 162, 50–57 (2015).
© 2014-2025 Authors
Public Media Certificate (RUS). 12+