Hemoglobin Heme Conformation in Patients with Different Oxygen Saturation Values

Alexander I. Yusipovich
Lomonosov Moscow State University, Russian Federation

Elvin S. Allakhverdiev
Russian National Medical Research Center of Cardiology, Moscow, Russian Federation

Evgeniia Yu. Parshina orcid (Login required)
Lomonosov Moscow State University, Russian Federation

Sergey K. Pirutin
Lomonosov Moscow State University, Russian Federation
Shenzhen MSU–BIT University, PRC

Margarita A. Silicheva
Lomonosov Moscow State University, Russian Federation

Oleg V. Rodnenkov
Russian National Medical Research Center of Cardiology, Moscow, Russian Federation

Tamila V. Martynyuk
Russian National Medical Research Center of Cardiology, Moscow, Russian Federation

Georgy V. Maksimov
Lomonosov Moscow State University, Russian Federation
University of Science and Technology MISIS and MISIS University, Moscow, Russian Federation


Paper #3529 received 14 Sep 2022; revised manuscript received 11 Nov 2022; accepted for publication 27 Nov 2022; published online 13 Dec 2022.

DOI: 10.18287/JBPE22.08.040505

Abstract

The characteristics of prosthetic group of hemoglobin – heme at different values of the oxygen saturation (sO2) was studied in human whole blood of patients with various clinical forms of coronary heart disease using the method of Raman spectroscopy. Correlation between the values of ratios of Raman spectra bands (1375 and 1355 & 1588 and 1552 cm–1, correspondingly) and oxygen saturation was shown. Based on the analysis of the Raman spectra, it is directly shown that at low sO2 the streatching of the heme ring comes before the binding of the bivalent iron atom to the oxygen molecule. It is probably caused by the cooperative effect (the attachment of a ligand to one heme leads to a change in of the protein and therefore the conformations of other hemes without ligands).

Keywords

Raman Spectroscopy; whole blood; erythrocytes; heme; oxygen saturation

Full Text:

PDF Appendix

References


1. B. R. Wood, D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” Journal of Raman Spectroscopy 33(7), 517–523 (2002).

2. N. A. Brazhe, S. Abdali, A. R. Brazhe, O. G. Luneva, N. Y. Bryzgalova, E. Y. Parshina, O. V. Sosnovtseva, and G. V. Maksimov, “New insight into erythrocyte through in vivo surface-enhanced Raman spectroscopy,” Biophysical Journal 97(12), 3206–3214 (2009).

3. I. P. Torres Filho, J. Terner, R. N. Pittman, E. Proffitt, and K. R. Ward, “Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation,” Journal of Applied Physiology 104(6), 1809–1817 (2008).

4. O. V. Slatinskaya, O. G. Luneva, L. I. Deev, P. I. Zaripov, and G. V. Maksimov, The Hemoglobin Conformation in Erythrocytes at Different Levels of Oxygen Partial Pressure,” Biophysics 66(5), 797–803 (2021).

5. G. V. Maksimov, N. V. Maksimova, A. A. Churin, S. N. Orlov, and A. B. Rubin, “Study on conformational changes in hemoglobin protoporphyrin in essential hypertension,” Biochemistry (Moscow) 66(3), 295–299 (2001).

6. O. G. Luneva, N. A. Brazhe, N. V. Maksimova, O. V. Rodnenkov, E. Yu. Parshina, N. Yu. Bryzgalova, G. V. Maksimov, A. B. Rubin, S. N. Orlova, and E. I. Chazov, “Ion transport, membrane fluidity and haemoglobin conformation in erythrocyte from patients with cardiovascular diseases: Role of augmented plasma cholesterol,” Pathophysiology 14(1), 41–46 (2007).

7. A. I. Yusipovich, N. A. Braze, O. G. Luneva, E. Yu. Parshina, A. A. Churin, O. V. Rodnenkov, and G. V. Maksimov, “Changes in the State of Hemoglobin in Patients with Coronary Heart Disease and Patients with Circulatory Failure,” Bulletin of Experimental Biology and Medicine 155(2), 233–235 (2013).

8. G. V. Maksimov, O. G. Luneva, N. V. Maksimova, E. Matettuchi, E. A. Medvedev, V. Z. Pashchenko, and A. B. Rubin, “Role of viscosity and permeability of the erythrocyte plasma membrane in changes in oxygen-binding properties of hemoglobin during diabetes mellitus,” Bulletin of Experimental Biology and Medicine 140(5), 510–513 (2005).

9. V. Mityanina, E. Yu. Parshina, A. I. Yusipovich, G. V. Maksimov, and A. A. Selischeva, “Oxygen-Binding Characteristics of Erythrocyte in Children with Type I Diabetes Mellitus of Different Duration,” Bulletin of Experimental Biology and Medicine 153(4), 508–512 (2012).

10. M. Pankratova, A. Yusipovich, M. Vorontsova, E. Parshina, S. Bochkareva, A. Cherkashin, A. Baizhumanov, M. Silicheva, T. Shiryaeva, G. Maksimov, and V. Peterkova, “One-year recombinant growth hormone therapy does not improve hemoglobin state and morphology of erythrocytes in growth hormone deficient children,” Pathophysiology 25(1), 13–17 (2018).

11. N. A. Brazhe, A. A. Baizhumanov, E. Yu. Parshina, A. I. Yusipovich, M. Ya. Akhalaya, Yu. V. Yarlykova, O. I. Labetskaya, S. M. Ivanova, B. V. Morukov, and G. V. Maksimov, “Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation,” Human Physiology 40(7), 804–809 (2014).

12. S. M. Ivanova, N. A. Brazhe, O. G. Luneva, Y. V. Yarlikova, O. I. Labetskaya, E. Y. Parshina, A. A. Baizhumanov, G. V. Maksimov, and B. V. Morukova, “Physical-chemical properties of plasma membrane and function of erythrocytes of cosmonauts after long-term space flight,” Acta Astronautica 68(9-10), 1517–1522 (2010).

13. I. P. Torres Filho, J. Terner, R. N. Pittman, L. G. Somera III, and K. R. Ward, “Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy,” American Journal of Physiology – Heart and Circulatory Physiology 289(1), H488–H495 (2005).

14. T. G. Spiro, T. C. Strekas, “Resonance Raman spectra of heme proteins. Effects of oxidation and spin state,” Journal of the American Chemical Society 96(2), 338–345 (1974).

15. S. C. Sahu, V. Simplaceanu, Q. Gong, N. T. Ho, F. Tian, J. H. Prestegard, and C. Ho, “Insights into the Solution Structure of Human Deoxyhemoglobin in the Absence and Presence of an Allosteric Effector,” Biochemistry 46(35), 9973–9980 (2007).

16. S. Chetana Shanmukhappa, S. Lokeshwaran, Venous Oxygen Saturation, StatPearls [Internet], Treasure Island, Florida (2022).

17. I. Ermakov, M. Sharifzadeh, M. R. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” Journal of Biomedical Optics 10(6), 064028 (2005).

18. N. A. Brazhe, K. Thomsen, M. Lønstrup, A. R. Brazhe, E. I. Nikelshparg, G. V. Maksimov, M. Lauritzen, and O. Sosnovtseva, “Monitoring of blood oxygenation in brain by resonance Raman spectroscopy,” Journal of Biophotonics 11(6), e201700311 (2018).

19. O. V. Slatinskaya, O. G. Luneva, L. I. Deev, S. N. Orlov, and G. V. Maksimov, “Conformational Changes that occur in Heme and Globin upon Temperature Variations and Normobaric Hypoxia,” Biophysics 65(2), 213–221 (2020).

20. T. G. Spiro, “Resonance Raman spectroscopic studies of heme proteins,” Biochimica et Biophysica Acta (BBA) – Reviews on Bioenergetics 416(2), 169–189 (1975).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+