Nanodiamonds for Biomedical Applications – Features of Interaction with Blood Components and Behavior in the Circulatory System [Review]

Elena V. Perevedentseva (Login required)
P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia


Paper #3543 received 3 Oct 2022; revised manuscript received 2 Nov 2022; accepted for publication 4 Nov 2022; published online 13 Dec 2022.

DOI: 10.18287/JBPE22.08.040506

Abstract

The development of the application of nanoparticles for biomedical research and theranostics in many cases involves the injection of nanoparticles into the bloodstream. The interaction of nanoparticles with blood components and the circulatory system is one of the key points of the relevant study or treatment. In this review, the interaction of diamond nanoparticles with blood in vivo and in vitro is considered in terms of the nanodiamonds safety and hematocompatibility and biomedical applications.

Keywords

nanodiamond; nanoparticles; biocompatibility; hematocompatibility; blood circulation system; blood cell

Full Text:

PDF

References


1. V. Singh, A. Basu, P. M. Shivapriya, P. K. Varadwaj, S. K. Samanta, and A. K. Sahoo, “Exploration of interactions of ‘blood-nano interface’ of carbon-based nanomaterials for biomedical applications,” Journal of Materials Research 34, 1950–1964 (2019).

2. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nature Nanotechnology 7, 11–23 (2012).

3. E. Perevedentseva, Y. C. Lin, M. Jani, and C. L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).

4. O. A. Shenderova, A. I. Shames, N. A. Nunn, M. D. Torelli, I. Vlasov, and A. Zaitsev, “Review Article: Synthesis, properties, and applications of fluorescent diamond particles,” Journal of Vacuum Science & Technology B 37(3), 030802 (2019).

5. E. Perevedentseva, Y. C. Lin, and C. L. Cheng, “A review of recent advances in nanodiamond-mediated drug delivery in cancer,” Expert Opinion on Drug Delivery 18(3), 369–382 (2021).

6. N. Prabhakar, J. M. Rosenholm, “Nanodiamonds for advanced optical bioimaging and beyond,” Current Opinion in Colloid & Interface Science 39, 220–231 (2019).

7. L. Basso, M. Cazzanelli, M. Orlandi, and A. Miotello, “Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space,” Applied Sciences 10(12), 4094 (2020).

8. E. Perevedentseva, D. Peer, V. Uvarov, B. Zousman, and O. Levinson, “Nanodiamonds of Laser Synthesis for Biomedical Applications,” Journal of Nanoscience and Nanotechnology 15, 1045–1052 (2015).

9. D. H. Jariwal, D. Patel, and S. Wairkar, “Surface functionalization of nanodiamonds for biomedical applications,” Materials Science and Engineering 113, 110996 (2020).

10. K. Katsiev, V. Solovyeva, R. Mahfouz, E. Abou-Hamad, W. Peng, H. Idriss, and R. Kirmani, “Fresh insights into detonation nanodiamond aggregation: An X-ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study,” Engineering Reports 3, e12375 (2021).

11. 11. P. Joshi, P. Riley, S. Gupta, R. J. Narayan, and J. Narayan, “Advances in laser-assisted conversion of polymeric and graphitic carbon into nanodiamond films,” Nanotechnology 32, 432001 (2021).

12. M. D. Torelli, N. A. Nunn, and O. A. Shenderova, “A Perspective on Fluorescent Nanodiamond Bioimaging,” Small 15(48), e1902151 (2019).

13. G. Thalassinos, A. Stacey, N. Dontschuk, B.J. Murdoch, E. Mayes, H. A. Girard, I. M. Abdullahi, L. Thomsen, A. Tadich, J.-C. Arnault, V. N. Mochalin, B. C. Gibson, and P. Reineck, “Fluorescence and Physico-Chemical Properties of Hydrogenated Detonation Nanodiamonds,” Journal of Carbon Research 6(1), 7 (2020).

14. P. Reineck, D. W. M. Lau, E. R. Wilson, K. Fox, M. R. Field, C. Deeleepojananan, V. N. Mochalin, and B. C. Gibson, “Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds,” American Chemical Society Nano 11, 10924–10934 (2017).

15. G. E. Johnstone, G. S. Cairns, and B. R. Patton, “Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy,” Royal Society Open Science 6, 190589 (2019).

16. Y. Y. Hui, W. W.-W. Hsiao, Y. Yuen, W.-W. Hsiao, S. Haziza, M. Simonneau, F. Treussart, and H.-C. Chang, “Single particle tracking of fluorescent nanodiamonds in cells and organisms,” Current Opinion in Solid State and Materials Science 21(1), 35–42 (2017).

17. D. Waddington, M. Sarracanie, H. Zhang, N. Salameh, D. R. Glenn, E. Rej, T. Gaebe, T. Boele, R. L. Walsworth, D. J. Reilly, and M. S. Rosen, “Nanodiamond-enhanced MRI via in situ hyperpolarization,” Nature Communications 8, 15118 (2017).

18. E. Bernardi, R. Nelz, S. Sonusen, and E. Neu, “Nanoscale Sensing Using Point Defects in Single-Crystal Diamond: Recent Progress on Nitrogen Vacancy Center-Based Sensors,” Crystals 7, 124 (2017).

19. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thore, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” American Chemical Society Nano 3(7), 1959–1965 (2009).

20. Y. Wu, T. Weil, “Recent Developments of Nanodiamond Quantum Sensors for Biological Applications,” Advanced Science 9(19), e2200059 (2022).

21. L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, and L. C. L. Hollenberg, “Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells,” Nature Nanotechnology 6(6), 358–363 (2011).

22. M. Kayci, J. Fan, O. Bakirman, and A. Herrmann, “Multiplexed sensing of biomolecules with optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Proceedings of the National Academy of Sciences 118(51), e2112664118 (2021).

23. M. Singh, B. Mazumder, “Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review,” Pharmaceutical Nanotechnology 10(1), 42–55 (2022).

24. D. G. Lim, R. E. Prima, K. H. Kim, E. Kang, K. Park, and S. H. Jeong, “Combinatorial nanodiamond in pharmaceutical and biomedical applications,” International Journal of Pharmaceutics 514(1), 41–51 (2016).

25. M. Mumtaz, N. Hussain, S. Salam, and M. Bilal, “Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review,” Journal of Materials Science 57, 8064–8099 (2022).

26. Y. Dong, R. Cao, Y. Li, Z. Wang, L. Li, and L. Tian, “Folate-conjugated nanodiamond for tumor-targeted drug delivery,” RSC Advances 5(101), 82711–82716 (2015).

27. M. S. Chan, L. S. Liu, H. M. Leung, and P. K. Lo, “Cancer-Cell-Specific Mitochondria-Targeted Drug Delivery by Dual-Ligand-Functionalized Nanodiamonds Circumvent Drug Resistance,” ACS Applied Materials & Interfaces 9(13), 11780–11789 (2017).

28. W.-S. Liao, Y. Ho, Y.-W. Lin, E. N. Raj, K.-K. Liu, C. Chen, X.-Z. Zhou, K.-P. Lu, and J.-I Chao, “Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite,” Acta Biomaterialia 86, 395–405 (2019).

29. C.-Y. Cheng, E. Perevedentseva, J.-S. Tu, P.-H. Chung, and C.-L. Cheng, “Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling,” Applied Physics Letters 90, 163903 (2007).

30. T.-K. Ryu, S.-W. Baek, R.-H. Kang, K.-Y. Jeong, D.-R. Jun, and S.-W. Choi, “Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds,” Journal of Controlled Release 270, 237–245 (2018).

31. D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, and R. Mrówczyński, “NDs@PDA@ICG Conjugates for Photothermal Therapy of Glioblastoma Multiforme,” Biomimetics 4(1), 3 (2019).

32. Y. Wu, M. N. A. Alam, P. Balasubramanian, A. Ermakova, S. Fischer, H. Barth, M. Wagner, M. Raabe, F. Jelezko, and T. Weil, “Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing,” Nano Letters 21(9), 3780–3788 (2021).

33. C. Y. Liu, M. C. Lee, H. F. Lin, Y. Y. Lin, W. Y. Lai, Y. Chien, T. Huo, W. L. Lo, Y. T. Lan, Y. W. Chen, P. I. Huang, Y. Y. Liu, and M. Y. Yang, “Nanodiamond-based microRNA delivery system promotes pluripotent stem cells toward myocardiogenic reprogramming,” Journal of the Chinese Medical Association 84(2), 177–182 (2021).

34. V. Benson, A. Amini, “Why nanodiamond carriers manage to overcome drug resistance in cancer,” Cancer Drug Resistance 3(4), 854–866 (2020).

35. Y. Yuan, Y. Chen, J. H. Liu, H. Wang, and Y. Liu, “Biodistribution and fate of nanodiamonds in vivo,” Diamond and Related Materials 18(1), 95–100 (2009).

36. L.-J. Su, M.-S. Wu, Y. Y. Hui, B.-M. Chang, P.-C. Hsu, Y.-T. Chen, H.-N. Ho, Y.-H. Huang, T.-Y. Ling, H.-H. Hsu, and H.-C. Chang, “Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs,” Scientific Reports 7, 45607 (2017).

37. S. Rojas, J. D. Gispert, R. Martın R, S. Abad, C. Menchón, D. Pareto, V. M. Víctor, M. Álvaro, H. García, and J. R. Herance, “Biodistribution of Amino-functionalized diamond nanoparticles. In Vivo studies based on 18F radionuclide emission,” American Chemical Society Nano 5(7), 5552–5559 (2011).

38. L. Moore, J. Yang, T. T. Lan, E. Osawa, D.-K. Lee, W. D. Johnson, J. Xi, E. K.-H. Chow, and D. Ho “Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis,” American Chemical Society Nano 10(8), 7385–7400 (2016).

39. W. Qi, Z. Li, J. Bi, J. Wang, J. Wang, T. Sun, Y. Guo, and W. Wu, “Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice,” Nanoscale Research Letters 7, 473 (2012).

40. A. P. Puzyr, A. V. Baron, K. V. Purtov, E. V. Bortnikov, N. N. Skobelev, O. A. Mogilnaya, and V. S. Bondar, “Nanodiamonds with novel properties: A biological study,” Diamond and Related Materials 16(12), 2124–2128 (2007).

41. E. V. Inzhevatkin, A. V. Baron, M. B. Volkova, N. G. Maksimov, N. K. Golubenko, M. V. Loshkareva, A. P. Puzyr’, N. O. Ronzhin, and V. S. Bondar, “Biodistribution of Detonation Synthesis Nanodiamonds in Mice after Intravenous Administration and Some Biochemical Changes in Blood Plasma,” Bulletin of Experimental Biology and Medicine 172, 77–80 (2021).

42. T. Niemiec, M. Szmidt, E. Sawosz, M. Grodzik, and K. Mitura, “The effect of diamond nanoparticles on redox and immune parameters in rats,” Journal of Nanoscience and Nanotechnology 11, 9072–9077 (2011).

43. L.-W. Tsai,Y.-C. Lin, E. Perevedentseva, A. Lugovtsov, A. Priezzhev, and C.-L. Cheng, “Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo,” International Journal of Molecular Sciences 17(7), 1111 (2016).

44. M. Szmidt, T. Niemiec, E. Sawosz-Chwalibog, and K. Mitura, “The influence of nanodiamond particles on rat health status,” Annals Warsaw University of Life Sciences 52, 195–201 (2013).

45. E. Neuhöferová, R. Křivohlavá, K. Qvortrup Jakobsen, and V. Benson, “Interaction of non-targeted nanodiamond carriers with specialized rodent cells: preliminary ex vivo and in vivo study,” Journal of BioScience and Biotechnology 11(1), 23–29 (2022).

46. X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang, and Z. Zhu, “Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation,” Toxicology Letters 198(2), 237–243 (2010).

47. O. A. Mogilnaya, A. P. Puzyr, A.V. Baron, and V. S. Bondar, “Hematological parameters and the state of liver cells of rats after oral administration of aflatoxin B1 alone and together with nanodiamonds,” Nanoscale Research Letters 5, 908–912 (2010).

48. Y. Yuan, X. Wang, G. Jia, J.-H. Liu, T. Wang, Y. Gu, S.-T. Yang, S. Zhen, H. Wang, and Y. Liu, “Pulmonary toxicity and translocation of nanodiamonds in mice,” Diamond and Related Materials 19(4), 291–299 (2010).

49. M. Wąsowicz, M. Ficek, M. S. Wróbel, R. Chakraborty, D. Fixler, P. Wierzba, and M. Jędrzejewska-Szczerska, “Haemocompatibility of Modified Nanodiamonds,” Materials 10(4), 352 (2017).

50. K. Mitura, M. Jedrzejewska-Szczerska, P. Ceynowa, M. Durek, M. Cichna, I. Kotela, and S. Mitura, “Haemocompatibility of non-functionalized and plasmschemical functionalized detonation nanodiamond particles,” Archives Metallurgy Materials 60(3), 2183–2189 (2015).

51. H.-C. Li, F.-J. Hsieh, C.-P. Chen, M.-Y. Chang, P. C. H. Hsieh, C.-C. Chen, S.-U. Hung, C.-C. Wu, and H.-C. Chang, “The hemocompatibility of oxidized diamond nanocrystals for biomedical applications,” Scientific Reports 3, 3044 (2013).

52. M. Chen, X. Zuo, Q. Xu, R. Wang, S. Fan, and H. Wu, “Investigating the Interaction of Nanodiamonds with Human Serum Albumin and Induced Cytotoxicity,” Journal of Spectroscopy, 4503137 (2019).

53. D. Khanal, Q. Lei, G. Pinget, D. A. Cheong, A. Gautam, R. Yusoff, B. Su, S. Yamaguchi, A. Kondyurin, J. C. Knowles, G. Georgiou, L. Macia, J.-H. Jang, I. Ramzan, K. Woei Ng, and W.Chrzanowski, “The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery,” Nanoscale Advances 2, 4798–4812 (2020).

54. L. Moore, E. K.-H. Chow, E. Osawa, J. M. Bishop, and D. Ho, “Diamond-Lipid Hybrids Enhance Chemotherapeutic Tolerance and Mediate Tumor Regression,” Advanced Materials 25(26), 3532–3541 (2013).

55. S. Sotoma, R. Igarashi, J. Iimura, Y. Kumiya, H. Tochio, Y. Harada, and M. Shirakawa, “Suppression of Nonspecific Protein–Nanodiamond Adsorption Enabling Specific Targeting of Nanodiamonds to Biomolecules of Interest,” Chemistry Letters 44(3), 354–356 (2015).

56. K. Kvakova, M. Ondra, J. Schimer, M. Petrik, Z. Novy, H. Raabova, M. Hajduch, and P. Cigler, “Visualization of Sentinel Lymph Nodes with Mannosylated Fluorescent Nanodiamonds,” Advanced Functional Materials 32(23), 2109960 (2022).

57. V. Vaijayanthimala, P. Y. Cheng, S. H. Yeh, K.-K. Liu, C.-H. Hsiao, J.-I Chao, and H.-C. Chang, “The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent,” Biomaterials 33(310, 7794e7802, (2012).

58. F. C. Barone, C. Marcinkiewicz, J. Li, M. Sternberg, P. I. Lelkes, D. A. Dikin, P.J. Bergold, J. A. Gerstenhaber, and G. Feuerstein, “Pilot study on biocompatibility of fluorescent nanodiamond-(NV)-Z~800 particles in rats: safety, pharmacokinetics, and bio-distribution (part III),” International Journal of Nanomedicine 13, 5449–5468 (2018).

59. K. Purtov, A. Petunin, E. Inzhevatkin, A. Burov, N. Ronzhin, A. Puzyr, and V. Bondar, “Biodistribution of different sized nanodiamonds in mice,” Journal of Nanoscience and Nanotechnology 15(2), 1070–1075 (2015).

60. L. K. Moore, M. K. Caldwell, T. Townsend T, T. R. Townsend, K. W. MacRenaris, G. Moyle-Heyrman, N. Rammohan, E. K. Schonher, J. E. Burdette, D. Ho, and T. J. Meade, “Water-Soluble Nanoconjugate for Enhanced Cellular Delivery of Receptor-Targeted Magnetic Resonance Contrast Agents,” Bioconjugate Chemistry 30(11), 2947–2957 (2019).

61. F. Yoshino, T. Amano,Y. Zou, J. Xu, F. Kimura,Y. Furusho, T. Chano, T. Murakami, L. Zhao, and N. Komatsu, “Preferential Tumor Accumulation of Polyglycerol Functionalized Nanodiamond Conjugated with Cyanine Dye Leading to Near-Infrared Fluorescence In Vivo Tumor Imaging,” Small 15(48), 1901930 (2019).

62. M. R. Miller, J. B. Raftis, J. P. Langrish, S. G. McLean, P. Samutrtai, S. P. Connell, S. Wilson, A. T. Vesey, P. H. B. Fokkens, A. J. F. Boere, P. Krystek, C. J. Campbell, P. W. F. Hadoke, K. Donaldson, F. R. Cassee, D. E. Newby, R. Duffin, and N. L. Mills, “Inhaled nanoparticles accumulate at sites of vascular disease,” American Chemical Society Nano 11(5), 4542–4552 (2017).

63. G. Sharma, A. R. Sharma, S.-S. Lee, M. Bhattacharya, J.-S. Nam, and C. Chakraborty “Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier,” International Journal of Pharmaceutics 559, 360–372 (2019).

64. H. Kadry, B. Noorani, and L. Cucullo, “A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity,” Fluids Barriers CNS 17, 69 (2020).

65. H. M. Leung, C. H. Lau, J. W.-T. Ho, M. S. Chan, T. J. H. Chang, L. H. Law, F. Wang, D. Y. Tam, L. S. Liu, K. W. Chan, C. Tin, and P. K. Lo, “Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood–brain barrier,” Nanoscale 13, 3184–3193 (2021).

66. P. Moscariello, M. Raabe, W. Liu, S. Bernhardt, H. Qi,U. Kaiser, Y. Wu, T. Weil, H. J. Luhmann, and J. Hedrich, “Unraveling in vivo brain transport of protein‐coated fluorescent nanodiamonds,” Small 15(42), 1902992 (2019).

67. J. Saraf, K. Kalia, P. Bhattacharya, and R. K. Tekade, “Growing synergy of nanodiamonds in neurodegenerative interventions,” Drug Discovery Today 24(2), 584–594 (2019).

68. D. Bhogale, F. Mazahir, and A. K. Yadav, “Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders,” Molecular Neurobiology 59, 4806–4824 (2022).

69. A. B. Volnova, S. K. Gordeev, and D. N. Lenkov, “Targeted delivery of 4-Aminopyridine into the rat brain by minicontainers from Carbon-nanodiamonds composite,” Journal of Neuroscience and Neuroengineering 2, 569–573 (2013).

70. S. H. Alawdi, E. S. El-Denshary, M. M. Safar, H. Eidi, M.-O. David, and M. A. Abdel-Wahhab, “Neuroprotective Effect of Nanodiamond in Alzheimer’s Disease Rat Model: a Pivotal Role for Modulating NF-κB and STAT3 Signaling,” Molecular Neurobiology 54, 1906–1918 (2017).

71. U. Roy, V. Drozd, A. Durygin, J. Rodriguez, P. Barber, V. Atluri, X. Liu, T. G. Voss, S. Saxena, and M. Nair, “Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain,” Scientific Reports 8, 1603 (2018).

72. J. S. Brenner, S. Mitragotri, and V. R. Muzykantov, “Red Blood Cell Hitchhiking. A Novel Approach for Vascular Delivery of Nanocarriers,” Annual Review of Biomedical Engineering 23, 225–248 (2021).

73. S. Zhang, Q. Fu, Y. Zhang, J. Pan, L. Zhang, Z. Zhang, and Z. Liu, “Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: strategies and applications,” Acta Pharmacologica Sinica 42, 1040–1054 (2021).

74. Y.-J. Li, J.-Y. Wu, J. Liu, X. Qiu, W. Xu, T. Tang, and D.-X. Xiang, “From blood to brain: blood cell-based biomimetic drug delivery systems,” Drug Delivery 28(1), 1214–1225 (2021).

75. V. Lenders, R. Escudero, X. Koutsoumpou, L. Armengol Álvarez, J. Rozenski, S. J. Soenen, Z. Zhao, S. Mitragotri, P. Baatsen, K. Allegaert, J. Toelen and B. B. Manshian, “Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption,” Journal of Nanobiotechnology 20, 333 (2022).

76. A. P. Puzyr, D. A. Neshumayev, V. S. Bondar, V. Yu. Dolmatov, I. V. Shugalei, N. P. Dubyago, S. V.Tarskikh, and G. V. Makarskaya, “The Influence of Detonation Nanodiamond Powder on Blood Cells,” in Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, J. Lee, N. Novikov, V. Turkevich (Eds.), Springer, Dordrecht, Netherlands, 155–167 (2005).

77. A. P .Puzyr, D. A. Neshumayev, S. V. Tarskikh, G. V. Makarskaya, V. Yu. Dolmatov, and V. S. Bondar, “Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro,” Diamond and Related Materials 13(11–12), 2020–2023 (2004).

78. J. Mona, C.-J. Kuo, E. Perevedentseva, A.V. Priezzhev, and C.-L. Cheng, “Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time,” Diamond and Related Materials 39, 73–77 (2013).

79. S. Pedroso-Santana, A. Sarabia-Saínz, N. Fleitas-Salazar, K. Santacruz-Gómez, M. Acosta-Elías, M. Pedroza-Montero, and R. Rier, “Deagglomeration and characterization of detonation nanodiamonds for biomedical applications,” Journal of Applied Biomedicine 15, 15–21 (2017).

80. Y.-C. Lin, L.-W.Tsai, E. V. Perevedentseva, J. Mona, C.-L. Cheng, H.-H. Chang, C.-H. Lin, D.-S. Sun, A. E. Lugovtsov, and A. V. Priezzhev, “The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro,” Journal of Biomedical Optics 17(10), 101512 (2012).

81. T. Avsievich, A. Popov, A. Bykov, and I. Meglinski, “Mutual interaction of red blood cells influenced by nanoparticles,” Scientific Reports 9, 5147 (2019).

82. S. Kumari, M. K. Singh, S. K. Singh, J. J. A. Grácio, and D. Dash, “Nanodiamonds activate blood platelets and induce thromboembolism,” Nanomedicine 9(3), 427–440 (2014).

83. L. Fusco, E. Avitabile, V. Armuzza, M. Orecchioni, A. Istif, D. Bedognetti, T. Da Ros, and L. G. Delogu, “Impact of the surface functionalization on nanodiamond biocompatibility: a comprehensive view on human blood immune cells,” Carbon 160(30), 390–404 (2020).

84. S. R. Hemelaar, A. Nagl, F. Bigot, M. M. Rodríguez-García, M. P. de Vries, M. Chipaux, and R. Schirhagl, “The interaction of fluorescent nanodiamond probes with cellular media,” Microchim Acta 184, 1001–1009 (2017).

85. A. V. Baron, A. P. Puzyr, I. I. Baron, and V. S. Bondar, “Effects of Modified Detonation Nanodiamonds on the Biochemical Composition of Human Blood,” Bulletin of Experimental Biology and Medicine 154, 781–784 (2013).

86. E. V. Perevedentseva, F. Y. Su, T. H. Su, Y. C. Lin, C. L. Cheng, A. V. Karmenyan, A. V. Priezzhev, and A. E. Lugovtsov, “Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins,” Quantum Electronics 40, 1089 (2011).

87. M. Aramesh, O. Shimoni, K. Ostrikov, S. Prawera, and J. Cervenka, “Surface charge effects in protein adsorption on nanodiamonds,” Nanoscale 13, (2015).

88. A. V. Karpukhin, N. V. Avkhacheva, R. Yu. Yakovlev, I. I. Kulakova, V. A. Yashin, G. V. Lisichkin, and V. G. Safronova, “Effect of detonation nanodiamonds on phagocyte activity,” Cell Biology International 35, 727–733 (2011).

89. N. B. Pham, T. T. Ho, G. T. Nguyen, T. T. Le, N. T. Le, H.-C. Chang, M. D. Pham, U. Conrad, and H. H. Chu, “Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein,” Journal of Nanobiotechnology 15, 69 (2017).

90. W. Yoo, W. Lee, H. N. Kim, J. Jeong, H. H. Park, J. H. Ahn, D. Jung, J. Lee, J.-S. Kim, S. W. Lee, W.-S. Cho, and S. Kim, “Nanodiamond as a Cytokine Sponge in Infectious Diseases,” Frontiers in Bioengineering and Biotechnology 10, 862495 (2022).

91. L. Batyuk, N. Kizilova, and O. Muraveinik, “Assessment of Protein Fractions of RBCs in Stroke under Influence of Nanodiamonds in vitro,” in 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 1-4 (2018).

92. Y. Hui, L. J. Su, O. Chen, Y.-T. Chen, T.-M. Liu, and H.-C. Chang, “Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating,” Scientific Reports 4, 5574 (2014).

93. A. Ermakova, G. Pramanik, J.-M. Cai, G. Algara-Siller, U. Kaiser, T. Weil, Y.-K. Tzeng, H. C. Chang, L. P. McGuinness, M. B. Plenio, B. Naydenov, and F. Jelezko, “Detection of a few metallo-protein molecules using color centers in nanodiamonds,” Nano Letters 13(7), 3305–3309 (2013).

94. K. Santacruz-Gomez, E. Silva-Campa, R. Melendrez-Amavizca, F. Teran Arce, V. Mata-Haro, P. B. Landon, C. Zhang, M. Pedroza-Montero, and R. Lal, “Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells,” Nanoscale 8, 7189–7196 (2016).

95. L. Batyuk, N. Kizilova, “Protective Action of Nanodiamonds Against Influence of Ionizing Radiation in Rats,” Acta Scientific Cancer Biology 4(3), 01–05 (2020).

96. E. Torres Sangiao, A. M. Holban, and M. C. Gestal, “Applications of Nanodiamonds in the Detection and Therapy of Infectious Diseases,” Materials 12, 1639 (2019).

97. S. Y. Ong, R. J. J. van Harmelen, N. Norouzi, F. Offens, I. M. Venema, M. B. Habibi Najafi, and R. Schirhagl, “Interaction of nanodiamonds with bacteria,” Nanoscale 10, 17117–17124 (2018).

98. A. V. Baron, N. V. Osipov, S. V. Yashchenko, Y. A. Kokotukha, I. J. Baron, A. P. Puzyr, I. A. Olkhovskiy, and V. S. Bondar , “Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds,” Doklady Biochemistry and Biophysics 469(1), 244–246 (2016).

99. M. V. Ivanova, E. I. Burtseva, V. T. Ivanova, S. V. Trushakova, E. I. Isaeva, E. S. Shevchenko, A. A. Isakova, A. A. Manykin, and B. V. Spitsyn, “Adsorption of influenza A and B viruses on detonation nanodiamonds materials,” MRS Online Proceedings Library 1452, 14–19 (2012).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+