Dental Pulp Location and Dentin Thickness Assessment in Situ with Diffuse Reflectance Spectroscopy

Elena E. Nikonova
Sechenov First Moscow State Medical University, Russia
M. V. Lomonosov Moscow State University, Russia

Gleb S. Budylin
Sechenov First Moscow State Medical University, Russia

Alena S. Kochmareva
Sechenov First Moscow State Medical University, Russia

Anna Yu. Turkina
Sechenov First Moscow State Medical University, Russia

Peter S. Timashev
Sechenov First Moscow State Medical University, Russia

Evgeny A. Shirshin (Login required)
Sechenov First Moscow State Medical University, Russia
M. V. Lomonosov Moscow State University, Russia


Paper #3552 received 12 Oct 2022; revised manuscript received 25 Nov 2022; accepted for publication 25 Nov 2022; published online 13 Dec 2022.

DOI: 10.18287/JBPE22.08.040507

Abstract

The modern approach to the treatment of caries requires maximum preservation of tooth tissues and pulp viability, for which it is necessary to know the residual thickness of dentin during its removal. Currently existing methods (Cone-beam Computed Tomography, electrical impedance device, and optical coherence tomography) are not widely used in clinical practice due to the laboriousness of their use or low accuracy. We evaluated the capabilities of the diffuse reflectance spectroscopy (DRS) method for determining dentine thickness in situ. Dentin tissues transmit light well in the visible and near-IR range, which makes it possible to detect the optical response of the dental pulp. The pulp contains hemoglobin and water, while dentin contains no hemoglobin, and its water content is less than 10%. Thus, the selection of the contributions of these components allows estimating the thickness of the dentin. Our results show a strong correlation (> 0.9) between dentin thickness and the amplitudes of the water and hemoglobin components. However, hemoglobin content is more susceptible to changes, caused by inflammation or the action of anesthesia. Thus, the most promising approach is use the water component as a proxy. The proposed method can be the basis for the development of a fiber-optic laser probe for clinical dentistry.

Keywords

diffuse reflectance spectroscopy; biophotonics; caries; dentine; dental pulp

Full Text:

PDF

References


1. R. A. Giacaman, C. Muñoz-Sandoval, K. W. Neuhaus, M. Fontana, and R. Chałas, “Evidence-based strategies for the minimally invasive treatment of carious lesions: Review of the literature,” Advances in Clinical and Experimental Medicine 27(7), 1009–1016 (2018).

2. F. Schwendicke, J. E. Frencken, L. Bjørndal, M. Maltz, D. J. Manton, D. Ricketts, K. Van Landuyt, A. Banerjee, G. Campus, S. Doméjean, M. Fontana, S. Leal, E. Lo, V. Machiulskiene, A. Schulte, C. Splieth, A. F. Zandona, and N. P. T. Innes, “Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal,” Advances in Dental Research 28(2), 58–67 (2016).

3. İ. H. Baltacıoğlu, G. Demirel, M. E. Kolsuz, and K.Orhan, “In-vitro analysis of maxillary first molars morphology using three dimensional Micro-CT imaging: considerations for restorative dentistry,” European Oral Research 52(2), 75–81 (2018).

4. J. Xu, J. He, Q. Yang, D. Huang, X. Zhou, O. A. Peters, and Y. Gao, “Accuracy of Cone-beam Computed Tomography in Measuring Dentin Thickness and Its Potential of Predicting the Remaining Dentin Thickness after Removing Fractured Instruments,” Journal of Endodontics 43(9), 1522–1527 (2017).

5. H. Sarhan, H. Hamama, W. Aboelmaaty, A. Zaeneldin, and S. Mahmoud, “Accuracy of an electrical impedance device in estimation of remaining dentin thickness vs cone beam computed tomography,” Odontology 110, 489–496 (2022).

6. P. Majkut, A. Sadr, Y. Shimada, Y. Sumi, and J. Tagami, “Validation of Optical Coherence Tomography against Micro–computed Tomography for Evaluation of Remaining Coronal Dentin Thickness,” Journal of Endodontics 41(8), 1349–1352 (2015).

7. L. Hoffmann, M. Feraric, E. Hoster, F. Litzenburger, and K.-H. Kunzelmann, “Investigations of the optical properties of enamel and dentin for early caries detection,” Clinical Oral Investigations 25, 1281–1289 (2021).

8. T. S. Vinothkumar, “Application of Near-infrared Light Transillumination in Restorative Dentistry: A Review,” The Journal of Contemporary Dental Practice 22(11), 1355–1361 (2021).

9. Y. Shimada, Takaaki Sato, G. Inoue, H. Nakagawa, T. Tabata, Y. Zhou, N. Hiraishi, T. Gondo, S. Takano, K. Ushijima, H. Iwabuchi, Y. Tsuji, S. Alireza, Y. Sumi, and J. Tagami, “Evaluation of Incipient Enamel Caries at Smooth Tooth Surfaces Using,” Materials 15(17), (2022).

10. Y.-K. Lee, “Translucency of human teeth and dental restorative materials and its clinical relevance,” Journal of Biomedical Optics 20(4), 045002 (2015).

11. R. Berg, J. Simon, D. Fried, and C. Darling, “Optical changes of dentin in the near-IR as a function of mineral content,” Proceedings of SPIE 10044, 100440M (2017).

12. M. Goldberg, A. Hirata, “The Dental Pulp: Composition, Properties and Functions,” JSM Dentistry Journal 5(1), 1079 (2017).

13. J. Schmitt, R. Webber, and E. Walker, “Optical determination of dental pulp vitality,” IEEE Transactions on Biomedical Engineering 38(4), 346–352 (1991).

14. M. Hirmer, S. N. Danilov, S. Giglberger, J. Putzger, A. Niklas, A. Jäger, K.-A. Hiller, S. Löffler, G. Schmalz, B. Redlich, I. Schulz, G. Monkman, and S. D. Ganichev, “Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality,” Journal of Infrared, Millimeter, and Terahertz Waves 33, 366–75 (2012).

15. S. Kakino, S. Kushibiki, A. Yamada, Z. Miwa, Y. Takagi, and Y. Matsuura, “Optical Measurement of Blood Oxygen Saturation of Dental Pulp,” International Scholarly Research Notices 2013, 502869 (2013).

16. K. S. Oikarinen, V. Kainulainen, V. Särkelä, K. Alaniska, and H. Kopola, “Information of circulation from soft tissue and dental pulp by means of pulsatile reflected light: Further development of optical pulp vitalometry,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 84(3), 315–320 (1997).

17. N. Ghouth, M. S. Duggal, A. BaniHani, and H. Nazzal, “The diagnostic accuracy of laser Doppler flowmetry in assessing pulp blood flow in permanent teeth: A systematic review,” Dental Traumatology 34(5), 311–319 (2018).

18. A. Almudever-Garcia, L. Forner, J. L. Sanz, C. Llena, F. J. Rodríguez-Lozano, J. Guerrero-Gironés, and M. Melo, “Pulse Oximetry as a Diagnostic Tool to Determine Pulp Vitality: A Systematic Review,” Applied Sciences 11(6), 2747 (2021).

19. V. Dogandzhiyska, I. Angelov, S. Dimitrov, and T. Uzunov, “In vitro study of light radiation penetration through dentin, according to the wavelength,” Acta Medica Bulgarica 42(2), 16–22 (2015).

20. T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” Journal of Biophotonics 8(1–2), 9–24 (2015).

21. N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” Journal of Biophotonics 3(1–2), 15–24 (2010).

22. A. J. Thompson, S. Coda, M. B. Sørensen, G. Kennedy, R. Patalay, U. Waitong-Brämming, P. A. A. De Beule, M. A. A. Neil, S. Andersson-Engels, N. Bendsøe, P. M. W. French, K. Svanberg, and C. Dunsby, “In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas,” Journal of Biophotonics 5(3), 240–54 (2012).

23. B. P. Yakimov, D. A. Davydov, V. V. Fadeev, and G. S. Budylin, “Comparative analysis of the methods for quantitative determination of water content in skin from diffuse reflectance spectroscopy data,” Quantum Electronics 50(1), 41–6 (2020).

24. N. R. Rovnyagina, G. S. Budylin, P. V. Dyakonov, Y. M. Efremov, M. M. Lipina, Y. R. Goncharuk, E. E. Murdalov, D. A. Pogosyan, D. A. Davydov, A. A. Korneev, N. B. Serejnikova, K. A. Mikaelyan, S. A. Evlashin, V. A. Lazarev, A. V. Lychagin, P. S. Timashev, and E. A. Shirshin, “Grading cartilage damage with diffuse reflectance spectroscopy: Optical markers and mechanical properties,” Journal of Biophotonics, e202200149 (2022).

25. A. A. Selifonov, V. V. Tuchin, “Control of the optical properties of gum and dentin tissue of a human tooth at laser spectral lines in the range of 200 – 800 nm,” Quantum Electronics 50(1), 47–54 (2020).

26. V. B. Yang, D. A. Curtis, and D. Fried, “Cross-polarization reflectance imaging of root caries and dental calculus on extracted teeth at wavelengths from 400 to 2350 nm,” Journal of Biophotonics 11(11), e201800113 (2018).

27. J. Charvát, A. Procházka, M. Fričl, O. Vyšata, and L. Himmlová, “Diffuse reflectance spectroscopy in dental caries detection and classification,” Signal, Image Video Processing 14(5), 1063–70 (2020).

28. V. V. Tuchin, G. B. Altshuler, “Dental and oral tissue optics,” Fundamentals and Applications of Biophotonics in Dentistry, 245–300 (2007).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+