Correlation between Blood Flow and Various Physiological Parameters in Human Skin

Juergen Lademann (Login required)
Charité-Universitätsmedizin Berlin, Germany

Maxim E. Darvin
Charité-Universitätsmedizin Berlin, Germany

Martina C. Meinke
Charité-Universitätsmedizin Berlin, Germany

Sora Jung
Charité-Universitätsmedizin Berlin, Germany

Paper #3560 received 27 Oct 2022; revised manuscript received 27 Nov 2022; accepted for publication 27 Nov 2022; published online 15 Dec 2022.

DOI: 10.18287/JBPE22.08.040508


Blood flow is an important parameter of the human organism and skin physiology. It correlates with skin temperature, penetration of active substances through the skin, delivery of antioxidants and development of disease symptoms, especially during inflammatory processes. Dr. Alexander Vasilyevich Priezzhev played a major role in the investigation of blood circulation, cell aggregation and disease correlation, as well as in the development of an aggregometer to determine the rheology of human blood flow. The following article provides an overview of the work performed at the Charité – Universitätsmedizin Berlin, Department of Dermatology and Allergology, Center of Experimental and Applied Cutaneous Physiology, partly in cooperation with Dr. Priezzhev, on the correlation of blood flow and various physiological parameters in human and animal skin in vivo.


glucose; carotenoids; hemoglobin; capillaries; flowmeter; Raman spectroscopy; FLIM

Full Text:



1. M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” Journal of Biomedical Optics 13(1), 014021 (2008).

2. A. Ciudin, C. Hernandez, and R. Simo, “Non-Invasive Methods of Glucose Measurement: Current Status and Future Perspectives,” Current Diabetes Reviews 8(1), 48–54 (2012).

3. U. Jacobi, U. Erdmenger, M. Darvin, W. Sterry, and J. Lademann, “Determination of blood flow to study the penetration of benzyl nicotinate topically applied in different vehicles,” Laser Physics 16, 838–841 (2006).

4. S. Vandersee, U. Erdmenger, A. Patzelt, M. Beyer, M. C. Meinke, M. E. Darvin, J. Koscielny, and J. Lademann, “Significance of the follicular pathway for dermal substhance penetration quantified by laser Doppler flowmetry,” Journal of Biophotonics 9(3), 276–81 (2016).

5. J.-L. Cracowski, M. Roustit, “Current Methods to Assess Human Cutaneous Blood Flow: An Updated Focus on Laser-Based-Techniques,” Journal of Microcirculation 23(5), 337–344 (2016).

6. M. E. Darvin, J. Lademann, J. von Hagen, S. B. Lohan, H. Kolmar, M. C. Meinke, and S. Jung, “Carotenoids in Human Skin In Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors,” Antioxidants 11(8), 1451 (2022).

7. M. E. Darvin, M. C. Meinke, W. Sterry, and J. Lademann, “Optical methods for noninvasive determination of carotenoids in human and animal skin,” Journal of Biomedical Optics 18(6), 61230 (2013).

8. M. E. Darvin, B. Magnussen, J. Lademann, and W. Kocher, “Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood,” Laser Physics Letters 13(9), 095601 (2016).

9. U. Blume-Peytavi, A. Rolland, M. E. Darvin, A. Constable, I. Pineau, C. Voit, K. Zappel, G. Schafer-Hesterberg, M. Meinke, R. L. Clavez, W. Sterry, and J. Lademann, “Cutaneous lycopene and beta-carotene levels measured by resonance Raman spectroscopy: high reliability and sensitivity to oral lactolycopene deprivation and supplementation,” European Journal of Pharmaceutics and Biopharmaceutics 73(1), 187–94 (2009).

10. J. Klein, M. E. Darvin, K. E. Muller, and J. Lademann, “Noninvasive measurements of carotenoids in bovine udder by reflection spectroscopy,” Journal of Biomedical Optics 17(10), 101514 (2012).

11. E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization,” Scientific Reports 7, 1171 (2017).

12. S. Men, J. M. Wong, E. J. Welch, J. Xu, S. Song, A. J. Deegan, A. Ravichander, B. Casavant, E. Berthier, and R. K. Wang, “OCT‐based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes,” Lasers in Surgery and Medicine 50, 908–916 (2018).

13. E. A. Csuka, S. C. Ward, C. Ekelem, D. A. Csuka, M. Ardigò, and N. A. Mesinkovska, “Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis,” Lasers in Surgery and Medicine 53(6), 776–797 (2021).

14. S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. W. Fluhr, G. Mendez, H.-J. Röwert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” Journal of Biomedical Optics 17(7), 076016 (2012).

15. A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, “Aggregation and Disaggregation of Erythrocytes in Whole Blood: Study by Backscattering Technique,” Journal of Biomedical Optics 4(1), 76-84 (1999).

16. K. Lee, M. Kinnunen, M. D. Khokhlova, E. V. Lyubin, A. V. Priezzhev, I. Meglinski, and A. A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” Journal of Biomedical Optics 21(3), 035001 (2016).

17. A. N. Semenov, B. P. Yakimov, A. A. Rubekina, D. A. Gorin, V. P. Drachev, M. P. Zarubin, A. N. Velikanov, J. Lademann, V. V. Fadeev, A. V. Priezzhev, M. E. Darvin, and E. A. Shirshin, “The oxidation-induced autofluorescence hypothesis: Red edge excitation and implications for metabolic imaging,” Molecules 25(8), (2020).

18. A. Semenov, A. Lugovtsov, P. Ermolinskiy, K. Lee, and A. Priezzhev, “Problems of Red Blood Cell Aggregation and Deformation Assessed by Laser Tweezers, Diffuse Light Scattering and Laser Diffractometry,” Photonics 9(4), (2022).

19. A. E. Lugovtsov, A. N. Semenov, and A. V. Priezzhev, “Red blood cell in the field of a beam of optical tweezers,” Quantum Electronics 52(1), (2022).

20. K. Lee, A. V. Danilina, M. Kinnunen, A. V. Priezzhev, and I. Meglinski, “Probing the Red Blood Cells Aggregating Force With Optical Tweezers,” IEEE Journal of Selected Topics in Quantum Electronics 22(3), 365–370 (2016).

21. Y.-C. Lin, L.-W. Tsai, E. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, A. E. Lugovtssov, A. Priezzhev, J. Mona, and C.-L. Cheng, “The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro,” Journal of Biomedical Optics 17(10), 101512 (2012).

22. C.-T. Germer, C. Isbert, D. Albrecht, A. Roggan, J. Pelz, J. P. Ritz, G. Müller, and H. J. Buhr, “Laser-Induced Thermotherapy Combined With Hepatic Arterial Embolization in the Treatment of Liver Tumors in a Rat Tumor Model,” Annals of Surgery 230(1), 55 (1999).

23. U. Jacobi, M. Kaiser, J. Koscielny, R. Schütz, M. Meinke, W. Sterry, and J. Lademann, “Comparison of blood flow to the cutaneous temperature and redness after topical application of benzyl nicotinate,” Journal of Biomedical Optics 11(1), 014025 (2006).

24. A. Teichmann, N. Otberg, U. Jacobi, W. Sterry, and J. Lademann, “Follicular Penetration: Development of a Method to Block the Follicles Selectively against the Penetration of Topically Applied Substances,” Skin Pharmacology Physiology 19(4), 216–223 (2006).

25. J. Lademann, H. Richter, S. Schanzer, M. C. Meinke, M. E. Darvin, J. Schleusener, V. Carrer, P. Breuckmann, and A. Patzelt, “Follicular penetration of nanocarriers is an important penetration pathway for topically applied drugs,” Hautarzt 70(3), 185–192 (2019).

26. P. Di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry Biophysics 274(2), 532–538 (1989).

27. W. Stahl, H. Sies, “Antioxidant activity of carotenoids,” Molecular Aspects of Medicine 24(6), 345–351 (2003).

28. P. Palozza, N. I. Krinsky, “Antioxidant effects of carotenoids invivo and invitro – an Overview,” Methods in Enzymology 213, 403–420 (1992).

29. M. E. Darvin, J. Lademann, and N. N. Brandt, “Comment on “Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy,” Laser Physics Letters 13, 048001 (2016).

30. D. Talwar, T. K. Ha, J. Cooney, C. Brownlee, and D. S. O’Reilly, “A routine method for the simultaneous measurement of retinol, alpha-tocopherol and five carotenoids in human plasma by reverse phase HPLC,” Clinica Chimica Acta 270, 85–100 (1998).

31. J. Raila, F. Enjalbert, R. Mothes, A. Hurtienne, and F. J. Schweigert, “Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma,” Veterinary Clinical Pathology 41, 119–122 (2012).

32. T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types I through VI,” Archives of Dermatological Research 124, 869–71 (1988).

33. K. Pezdirc, M. J. Hutchesson, R. L. Williams, M. E. Rollo, T. L. Burrows, L. G. Wood, C. Oldmeadow, and C. E. Collins, “Consuming high-carotenoid fruit and vegetables influences skin yellowness and plasma carotenoids in young women: a Single-blind randomized crossover trial,” Journal of the Academy of Nutricion and Dietetics 116(8), 1257–1265 (2016).

34. D. W. K. Toh, W. W. Loh, C. N. Sutanto, Y. Yao, and J. E. Kim, “Skin carotenoid status and plasma carotenoids: biomarkers of dietary carotenoids, fruits and vegetables for middle-aged and older Singaporean adults,” British Journal of Nutrition 126(9), 1398–1407 (2021).

35. S. B. Jilcott Pitts, N. S. Johnson, Q. Wu, G. C. Firnhaber, A. Preet Kaur, and J. Obasohan, “A meta-analysis of studies examining associations between resonance Raman spectroscopy-assessed skin carotenoids and plasma carotenoids among adults and children,” Nutrition Reviews 80(2), 230–241 (2022).

36. L. M. Nguyen, R. E. Scherr, J. D. Linnell, I. V. Ermakov, W. Gellermann, L. Jahns, C. L. Keen, S. Miyamoto, F. M. Steinberg, H. M. Young, and S. Zidenberg-Cherr, “Evaluating the relationship between plasma and skin carotenoids and reported dietary intake in elementary school children to assess fruit and vegetable intake,” Archives of Biochemistry and Biophysics 572, 73–80 (2015).

37. M. C. Meinke, S. Schanzer, S. B. Lohan, I. Shchatsinin, M. E. Darvin, H. Vollert, B. Magnussen, W. Kocher, J. Helfmann, and J. Lademann, “Comparison of different cutaneous carotenoid sensors and influence of age, skin type, and kinetic changes subsequent to intake of a vegetable extract,” Journal of Biomedical Optics 21(10), 107002 (2016).

38. J. Klein, M. E. Darvin, M. C. Meinke, F. J. Schweigert, K. E. Muller, and J. Lademann, “Analyses of the correlation between dermal and blood carotenoids in female cattle by optical methods,” Journal of Biomedical Optics 18(6), 061219 (2013).

39. M. C. Meinke, M. E. Darvin, H. Vollert, and J. Lademann, “Bioavailability of natural carotenoids in human skin compared to blood,” European Journal of Pharmaceutics and Biopharmaceutics 76(2), 269–74 (2010).

40. J. Klein, M. E. Darvin, K. E. Muller, and J. Lademann, “Serial non-invasive measurements of dermal carotenoid concentrations in dairy cows following recovery from abomasal displacement,” PLoS One 7, e47706 (2012).

41. J. Lademann, A. Patzelt, M. Darvin, H. Richter, C. Antoniou, W. Sterry, and S. Koch, “Application of optical non-invasive methods in skin physiology,” Laser Physics Letters 5(5), 335–346 (2008).

42. M. A. Altintas, A. A. Altintas, M. Guggenheim, A. E. Steiert, M. C. Aust, A. D. Niederbichler, C. Herold, and P. M. Vogt, “Insight in Human Skin Microcirculation Using In Vivo Reflectance-Mode Confocal Laser Scanning Microscopy,” Journal of Digital Imaging 23, 475–481 (2010).

43. M. E. Darvin, H. Richter, Y. J. Zhu, M. C. Meinke, F. Knorr, S. A. Gonchukov, K. Koenig, and J. Lademann, “Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging,” Quantum Electronics 44(7), 646–651 (2014).

44. M. A. Ilie, C. Caruntu, D. Lixandru, M. Tampa, S.-R. Georgescu, M.-M. Constantin, C. Constantin, M. Neagu, S. A. Zurac, and D. Boda, “In vivo confocal laser scanning microscopy imaging of skin inflammation: Clinical applications and research directions (Review),” Experimental and Therapeutic Medicine 17, 1004–1011 (2019).

45. S. Schuh, J. Holmes, M. Ulrich, L. Themstrup, G. B. E. Jemec, N. De Carvalho, G. Pellacani, and J. Welzel, “Imaging Blood Vessel Morphology in Skin: Dynamic Optical Coherence Tomography as a Novel Potential Diagnostic Tool in Dermatology,” Dermatology of Therapy 7, 187–202 (2017).

46. M. Ulrich, L. Themstrup, N. de Carvalho, S. Ciardo, J. Holmes, R. Whitehead, J. Welzel, G. B. E. Jemec, and G. Pellacani, “Dynamic optical coherence tomography of skin blood vessels – proposed terminology and practical guidelines,” Journal of the European Academy of Dermatology and Venereology 32, 152–155 (2018).

47. M. Kröger, J. Scheffel, E. A. Shirshin, J. Schleusener, M. C. Meinke, J. Lademann, M. Maurer, and M. E. Darvin, “Label-free imaging of M1 and M2 macrophage phenotypes in the human dermis in vivo using two-photon excited FLIM,” ELife 11, e72819 (2022).

48. B. P. Yakimov, M. A. Gogoleva, A. N. Semenov, S. A. Rodionov, M. V. Novoselova, A. V. Gayer, A. V. Kovalev, A. I. Bernakevich, V. V. Fadeev, A. G. Armaganov, V. P. Drachev, D. A. Gorin, M. E. Darvin, V. I. Shcheslavskiy, G. S. Budylin, A. V. Priezzhev, and E. A. Shirshin, “Label-free characterization of white blood cells using fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and erythrophagocytosis [Invited],” Biomedical Optics Express 10(8), 4220–4236 (2019).

49. E. A. Shirshin, B. P. Yakimov, S. A. Rodionov, N. P. Omelyanenko, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, “Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells,” Laser Physics Letters 15, 075604 (2018).

50. A. I. Maslianitsyna, P. B. Ermolinsky, A. E. Lugovtsov, and A. V. Priezzhev, “Study by optical techniques of the dependence of aggregation parameters of human red blood cells on their deformability,” Journal of Biomedical Photonics & Engineering 6, 020305 (2020).

51. D. A. Kravchuk, K. A. Voronina, “Studies of Red Blood Cell Aggregation and Blood Oxygenation on the Basis of the Optoacoustic Effect in Biological Media,” Journal of Biomedical Photonics & Engineering 6, 010307 (2020).

52. P. B. Ermolinskiy, A. I. Maslyanitsina, A. E. Lugovtsov, and A. V. Priezzhev, “Temperature Dependencies of the Aggregation Properties of RBC in Dextran Solutions In Vitro,” Journal of Biomedical Photonics & Engineering 6, 020501 (2020).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+